Discover how IDNLearn.com can help you find the answers you need quickly and easily. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.

[53] A gramophone record takes 4.0 s to reach its angular velocity of 60 rev/min from rest. Find its angular acceleration assuming that it is constant.

A. [tex]$3 \pi \, \text{rad/s}^2$[/tex]
B. [tex]$4 \pi \, \text{rad/s}^2$[/tex]
C. [tex]$1 \pi \, \text{rad/s}^2$[/tex]
D. [tex]$2 \pi \, \text{rad/s}^2$[/tex]

Space for your working:


Sagot :

To find the angular acceleration of a gramophone record, let's follow these steps carefully:

### Step 1: Understanding Given Values
- Initial angular velocity, [tex]\( \omega_i = 0 \)[/tex] rev/min (since the record starts from rest).
- Final angular velocity, [tex]\( \omega_f = 60 \)[/tex] rev/min.
- Time taken to reach final angular velocity, [tex]\( t = 4.0 \)[/tex] seconds.

### Step 2: Conversion of Units
Angular velocity is typically measured in radians per second (rad/s) in physics. We need to convert the final angular velocity from revolutions per minute (rev/min) to radians per second (rad/s).

[tex]\[ \omega_f = 60 \text{ rev/min} \][/tex]

Since [tex]\( 1 \text{ rev} = 2\pi \text{ radians} \)[/tex] and [tex]\( 1 \text{ minute} = 60 \text{ seconds} \)[/tex]:

[tex]\[ \omega_f (\text{rad/s}) = 60 \text{ rev/min} \times \left( \frac{2\pi \text{ rad}}{1 \text{ rev}} \right) \times \left( \frac{1 \text{ min}}{60 \text{ s}} \right) \][/tex]

[tex]\[ \omega_f (\text{rad/s}) = 60 \times \frac{2\pi}{60} \text{ rad/s} \][/tex]

[tex]\[ \omega_f (\text{rad/s}) = 2\pi \text{ rad/s} \][/tex]

### Step 3: Use the Angular Acceleration Formula
The formula to calculate angular acceleration ([tex]\(\alpha\)[/tex]) is:

[tex]\[ \alpha = \frac{\Delta \omega}{\Delta t} \][/tex]

where [tex]\( \Delta \omega = \omega_f - \omega_i \)[/tex].

Since the initial angular velocity [tex]\( \omega_i = 0 \)[/tex]:

[tex]\[ \alpha = \frac{2\pi \text{ rad/s} - 0 \text{ rad/s}}{4 \text{ s}} \][/tex]

[tex]\[ \alpha = \frac{2\pi}{4} \][/tex]

[tex]\[ \alpha = \frac{\pi}{2} \text{ rad/s}^2 \][/tex]

### Step 4: Compare with Choices
We have calculated the angular acceleration as [tex]\( \frac{\pi}{2} \text{ rad/s}^2 \)[/tex].

### Step 5: Identify Closest Choice
Among the given choices:
- (A) [tex]\(3 \pi \text{ rad/s}^2\)[/tex]
- (B) [tex]\(4 \pi \text{ rad/s}^2\)[/tex]
- (C) [tex]\(1 \pi \text{ rad/s}^2\)[/tex]
- (D) [tex]\(2 \pi \text{ rad/s}^2\)[/tex]

The angular acceleration [tex]\( \frac{\pi}{2} \text{ rad/s}^2 \)[/tex] is closest to [tex]\( \pi \text{ rad/s}^2 \)[/tex].

Thus, the closest and most appropriate choice is:

- (C) [tex]\(1 \pi \text{ rad/s}^2\)[/tex]

So, the answer is:
[tex]\[ \boxed{3} \][/tex]