Connect with a knowledgeable community and get your questions answered on IDNLearn.com. Join our knowledgeable community and access a wealth of reliable answers to your most pressing questions.
Sagot :
To determine the distance [tex]\( r \)[/tex] to the star given its luminosity [tex]\( L \)[/tex] and its apparent brightness [tex]\( AB \)[/tex], we can use the Luminosity Distance Formula. The formula relates the apparent brightness ([tex]\( AB \)[/tex]), the intrinsic luminosity ([tex]\( L \)[/tex]), and the distance to the star ([tex]\( r \)[/tex]):
[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]
Given data:
- Luminosity, [tex]\( L = 3.9 \times 10^{26} \)[/tex] watts
- Apparent brightness, [tex]\( AB = 2.0 \times 10^{-10} \)[/tex] watt/m[tex]\(^2\)[/tex]
We need to solve for the distance [tex]\( r \)[/tex]. Rearrange the formula to isolate [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{ \frac{L}{4 \pi AB} } \][/tex]
1. Plug in the given values:
[tex]\[ L = 3.9 \times 10^{26} \][/tex]
[tex]\[ AB = 2.0 \times 10^{-10} \][/tex]
2. Substitute these values into the formula:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{4 \pi \times 2.0 \times 10^{-10}} } \][/tex]
3. Calculate the denominator:
[tex]\[ 4 \pi \times 2.0 = 8 \pi \][/tex]
4. Now the expression under the square root is:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{8 \pi \times 10^{-10}} } \][/tex]
5. Perform the division inside the square root:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \][/tex] (using [tex]\( \pi \approx 3.14159 \)[/tex])
6. Simplify the expression:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \approx \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \approx \sqrt{1.55185328066 \times 10^{36}} \][/tex]
7. Simplify the square root:
[tex]\[ r \approx \sqrt{1.55185328066 \times 10^{36}} \approx 3.93923938742745 \times 10^{17} \][/tex]
Therefore, the distance to the star [tex]\( r \)[/tex] is approximately [tex]\( 3.939 \times 10^{17} \)[/tex] meters, which matches one of the provided options.
So, the correct distance to the star is:
[tex]\[ 3.939 \times 10^{17} \, \text{m} \][/tex]
[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]
Given data:
- Luminosity, [tex]\( L = 3.9 \times 10^{26} \)[/tex] watts
- Apparent brightness, [tex]\( AB = 2.0 \times 10^{-10} \)[/tex] watt/m[tex]\(^2\)[/tex]
We need to solve for the distance [tex]\( r \)[/tex]. Rearrange the formula to isolate [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{ \frac{L}{4 \pi AB} } \][/tex]
1. Plug in the given values:
[tex]\[ L = 3.9 \times 10^{26} \][/tex]
[tex]\[ AB = 2.0 \times 10^{-10} \][/tex]
2. Substitute these values into the formula:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{4 \pi \times 2.0 \times 10^{-10}} } \][/tex]
3. Calculate the denominator:
[tex]\[ 4 \pi \times 2.0 = 8 \pi \][/tex]
4. Now the expression under the square root is:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{8 \pi \times 10^{-10}} } \][/tex]
5. Perform the division inside the square root:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \][/tex] (using [tex]\( \pi \approx 3.14159 \)[/tex])
6. Simplify the expression:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \approx \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \approx \sqrt{1.55185328066 \times 10^{36}} \][/tex]
7. Simplify the square root:
[tex]\[ r \approx \sqrt{1.55185328066 \times 10^{36}} \approx 3.93923938742745 \times 10^{17} \][/tex]
Therefore, the distance to the star [tex]\( r \)[/tex] is approximately [tex]\( 3.939 \times 10^{17} \)[/tex] meters, which matches one of the provided options.
So, the correct distance to the star is:
[tex]\[ 3.939 \times 10^{17} \, \text{m} \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.