IDNLearn.com is the perfect place to get detailed and accurate answers to your questions. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.
Sagot :
To determine the distance [tex]\( r \)[/tex] to the star given its luminosity [tex]\( L \)[/tex] and its apparent brightness [tex]\( AB \)[/tex], we can use the Luminosity Distance Formula. The formula relates the apparent brightness ([tex]\( AB \)[/tex]), the intrinsic luminosity ([tex]\( L \)[/tex]), and the distance to the star ([tex]\( r \)[/tex]):
[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]
Given data:
- Luminosity, [tex]\( L = 3.9 \times 10^{26} \)[/tex] watts
- Apparent brightness, [tex]\( AB = 2.0 \times 10^{-10} \)[/tex] watt/m[tex]\(^2\)[/tex]
We need to solve for the distance [tex]\( r \)[/tex]. Rearrange the formula to isolate [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{ \frac{L}{4 \pi AB} } \][/tex]
1. Plug in the given values:
[tex]\[ L = 3.9 \times 10^{26} \][/tex]
[tex]\[ AB = 2.0 \times 10^{-10} \][/tex]
2. Substitute these values into the formula:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{4 \pi \times 2.0 \times 10^{-10}} } \][/tex]
3. Calculate the denominator:
[tex]\[ 4 \pi \times 2.0 = 8 \pi \][/tex]
4. Now the expression under the square root is:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{8 \pi \times 10^{-10}} } \][/tex]
5. Perform the division inside the square root:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \][/tex] (using [tex]\( \pi \approx 3.14159 \)[/tex])
6. Simplify the expression:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \approx \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \approx \sqrt{1.55185328066 \times 10^{36}} \][/tex]
7. Simplify the square root:
[tex]\[ r \approx \sqrt{1.55185328066 \times 10^{36}} \approx 3.93923938742745 \times 10^{17} \][/tex]
Therefore, the distance to the star [tex]\( r \)[/tex] is approximately [tex]\( 3.939 \times 10^{17} \)[/tex] meters, which matches one of the provided options.
So, the correct distance to the star is:
[tex]\[ 3.939 \times 10^{17} \, \text{m} \][/tex]
[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]
Given data:
- Luminosity, [tex]\( L = 3.9 \times 10^{26} \)[/tex] watts
- Apparent brightness, [tex]\( AB = 2.0 \times 10^{-10} \)[/tex] watt/m[tex]\(^2\)[/tex]
We need to solve for the distance [tex]\( r \)[/tex]. Rearrange the formula to isolate [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{ \frac{L}{4 \pi AB} } \][/tex]
1. Plug in the given values:
[tex]\[ L = 3.9 \times 10^{26} \][/tex]
[tex]\[ AB = 2.0 \times 10^{-10} \][/tex]
2. Substitute these values into the formula:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{4 \pi \times 2.0 \times 10^{-10}} } \][/tex]
3. Calculate the denominator:
[tex]\[ 4 \pi \times 2.0 = 8 \pi \][/tex]
4. Now the expression under the square root is:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{8 \pi \times 10^{-10}} } \][/tex]
5. Perform the division inside the square root:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \][/tex] (using [tex]\( \pi \approx 3.14159 \)[/tex])
6. Simplify the expression:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \approx \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \approx \sqrt{1.55185328066 \times 10^{36}} \][/tex]
7. Simplify the square root:
[tex]\[ r \approx \sqrt{1.55185328066 \times 10^{36}} \approx 3.93923938742745 \times 10^{17} \][/tex]
Therefore, the distance to the star [tex]\( r \)[/tex] is approximately [tex]\( 3.939 \times 10^{17} \)[/tex] meters, which matches one of the provided options.
So, the correct distance to the star is:
[tex]\[ 3.939 \times 10^{17} \, \text{m} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.