Get the most out of your questions with the extensive resources available on IDNLearn.com. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.
Sagot :
Sure, let's go through the steps to find the distance to the star using the provided data and the Luminosity Distance Formula.
Given:
- Luminosity, [tex]\(L = 6.1 \times 10^{25}\)[/tex] watts
- Apparent Brightness, [tex]\(AB = 2.0 \times 10^{-10}\)[/tex] watts/m²
- Formula: [tex]\(AB = \frac{L}{4 \pi r^2}\)[/tex]
We need to find the distance [tex]\(r\)[/tex].
First, rewrite the formula to solve for [tex]\(r\)[/tex]:
[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]
Rearrange the equation to solve for [tex]\(r^2\)[/tex]:
[tex]\[ r^2 = \frac{L}{4 \pi AB} \][/tex]
Now, take the square root of both sides to solve for [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{\frac{L}{4 \pi AB}} \][/tex]
Substitute the given values into the equation:
[tex]\[ r = \sqrt{\frac{6.1 \times 10^{25}}{4 \pi \times 2.0 \times 10^{-10}}} \][/tex]
Calculate the denominator first, which includes the constant [tex]\(\pi\)[/tex]:
[tex]\[ 4 \pi \approx 4 \times 3.14159 \approx 12.5664 \][/tex]
Now, multiply this by the apparent brightness:
[tex]\[ 12.5664 \times 2.0 \times 10^{-10} = 25.1328 \times 10^{-10} \][/tex]
[tex]\[ = 2.51328 \times 10^{-9} \][/tex]
Next, divide the luminosity by this result:
[tex]\[ \frac{6.1 \times 10^{25}}{2.51328 \times 10^{-9}} \approx 2.426370453809958 \times 10^{34} \][/tex]
Finally, take the square root to find [tex]\(r\)[/tex]:
[tex]\[ r \approx \sqrt{2.426370453809958 \times 10^{34}} \approx 1.5579194081053757 \times 10^{17} \][/tex]
Thus, the distance to the star is approximately:
[tex]\[ r \approx 1.558 \times 10^{17} \text{ meters} \][/tex]
Therefore, from the given multiple-choice options, the correct answer is:
[tex]\[ 1.558 \times 10^{17} \text{ meters} \][/tex]
Given:
- Luminosity, [tex]\(L = 6.1 \times 10^{25}\)[/tex] watts
- Apparent Brightness, [tex]\(AB = 2.0 \times 10^{-10}\)[/tex] watts/m²
- Formula: [tex]\(AB = \frac{L}{4 \pi r^2}\)[/tex]
We need to find the distance [tex]\(r\)[/tex].
First, rewrite the formula to solve for [tex]\(r\)[/tex]:
[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]
Rearrange the equation to solve for [tex]\(r^2\)[/tex]:
[tex]\[ r^2 = \frac{L}{4 \pi AB} \][/tex]
Now, take the square root of both sides to solve for [tex]\(r\)[/tex]:
[tex]\[ r = \sqrt{\frac{L}{4 \pi AB}} \][/tex]
Substitute the given values into the equation:
[tex]\[ r = \sqrt{\frac{6.1 \times 10^{25}}{4 \pi \times 2.0 \times 10^{-10}}} \][/tex]
Calculate the denominator first, which includes the constant [tex]\(\pi\)[/tex]:
[tex]\[ 4 \pi \approx 4 \times 3.14159 \approx 12.5664 \][/tex]
Now, multiply this by the apparent brightness:
[tex]\[ 12.5664 \times 2.0 \times 10^{-10} = 25.1328 \times 10^{-10} \][/tex]
[tex]\[ = 2.51328 \times 10^{-9} \][/tex]
Next, divide the luminosity by this result:
[tex]\[ \frac{6.1 \times 10^{25}}{2.51328 \times 10^{-9}} \approx 2.426370453809958 \times 10^{34} \][/tex]
Finally, take the square root to find [tex]\(r\)[/tex]:
[tex]\[ r \approx \sqrt{2.426370453809958 \times 10^{34}} \approx 1.5579194081053757 \times 10^{17} \][/tex]
Thus, the distance to the star is approximately:
[tex]\[ r \approx 1.558 \times 10^{17} \text{ meters} \][/tex]
Therefore, from the given multiple-choice options, the correct answer is:
[tex]\[ 1.558 \times 10^{17} \text{ meters} \][/tex]
Your presence in our community is highly appreciated. Keep sharing your insights and solutions. Together, we can build a rich and valuable knowledge resource for everyone. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.