IDNLearn.com offers a user-friendly platform for finding and sharing answers. Ask your questions and receive reliable and comprehensive answers from our dedicated community of professionals.

Use the Luminosity Distance Formula to find the distance to a star.

Given:
- Luminosity, [tex]\( L = 5.2 \times 10^{23} \)[/tex] watts
- Apparent brightness at Earth, [tex]\( 1.0 \times 10^{-10} \)[/tex] watts/m[tex]\(^2\)[/tex]

Formula:
[tex]\[ \text{Apparent Brightness (AB)} = \frac{\text{Luminosity (L)}}{4 \pi r^2} \][/tex]

Choose the correct distance from the options below:

A. [tex]\( 2.034 \times 10^{-16} \)[/tex] m
B. [tex]\( 3.251 \times 10^{16} \)[/tex] m
C. [tex]\( 2.034 \times 10^{16} \)[/tex] m
D. [tex]\( 3.251 \times 10^{-16} \)[/tex] m


Sagot :

To find the distance to a star using the Luminosity Distance Formula, let's follow these steps:

1. Understand the Given Data:
- Luminosity ([tex]\( L \)[/tex]) = [tex]\( 5.2 \times 10^{23} \)[/tex] watts
- Apparent Brightness ([tex]\( AB \)[/tex]) = [tex]\( 1.0 \times 10^{-10} \)[/tex] watts/m[tex]\(^2\)[/tex]
- Formula to use: [tex]\( AB = \frac{L}{4 \pi r^2} \)[/tex]

2. Rearrange the Formula to Solve for Distance ([tex]\( r \)[/tex]):
- The formula [tex]\( AB = \frac{L}{4 \pi r^2} \)[/tex] can be rearranged to solve for [tex]\( r \)[/tex]:
[tex]\[ AB \times 4 \pi r^2 = L \][/tex]
[tex]\[ 4 \pi r^2 = \frac{L}{AB} \][/tex]
[tex]\[ r^2 = \frac{L}{4 \pi AB} \][/tex]
[tex]\[ r = \sqrt{\frac{L}{4 \pi AB}} \][/tex]

3. Plug in the Given Values:
- [tex]\( L = 5.2 \times 10^{23} \)[/tex] watts
- [tex]\( AB = 1.0 \times 10^{-10} \)[/tex] watts/m[tex]\(^2\)[/tex]

4. Calculate the Intermediate Value [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{5.2 \times 10^{23}}{4 \pi \times 1.0 \times 10^{-10}} \][/tex]
[tex]\[ r^2 = \frac{5.2 \times 10^{23}}{4 \pi \times 10^{-10}} \][/tex]

Using the fact that [tex]\( 4 \pi \approx 12.5664 \)[/tex], we get:
[tex]\[ r^2 = \frac{5.2 \times 10^{23}}{12.5664 \times 10^{-10}} \][/tex]
[tex]\[ r^2 \approx 4.138 \times 10^{32} \][/tex]

5. Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{4.138 \times 10^{32}} \][/tex]
[tex]\[ r \approx 2.034 \times 10^{16} \, \text{meters} \][/tex]

Thus, the distance to the star is approximately [tex]\( 2.034 \times 10^{16} \)[/tex] meters.

Given the options:
- [tex]\( 2.034 \times 10^{-16} \)[/tex] m
- [tex]\( 3.251 \times 10^{16} \)[/tex] m
- [tex]\( 2.034 \times 10^{16} \)[/tex] m
- [tex]\( 3.251 \times 10^{-16} \)[/tex] m

The correct answer is [tex]\( 2.034 \times 10^{16} \)[/tex] meters.