Discover a wealth of knowledge and get your questions answered at IDNLearn.com. Discover detailed and accurate answers to your questions from our knowledgeable and dedicated community members.

Use the Luminosity Distance Formula to find the distance to a Sun-like star [tex]\left( L = 3.8 \times 10^{26} \, \text{watts} \right)[/tex] whose apparent brightness at Earth is [tex]1.0 \times 10^{-10} \, \text{watt/m}^2[/tex].

Formula: Apparent Brightness [tex](AB) = \frac{\text{Luminosity}}{4 \pi r^2}[/tex]

A. [tex]5.499 \times 10^{17} \, \text{m}[/tex]
B. [tex]5.499 \times 10^{-17} \, \text{m}[/tex]
C. [tex]6.577 \times 10^{17} \, \text{m}[/tex]
D. [tex]6.577 \times 10^{-17} \, \text{m}[/tex]


Sagot :

To determine the distance to a Sun-like star with a given luminosity and apparent brightness, we'll use the provided Luminosity Distance Formula:

[tex]\[ \text{Apparent Brightness} (AB) = \frac{\text{Luminosity} (L)}{4 \pi r^2} \][/tex]

Given data:
- Luminosity [tex]\( L = 3.8 \times 10^{26} \)[/tex] watts
- Apparent brightness [tex]\( AB = 1.0 \times 10^{-10} \)[/tex] watt/m²

We need to find the distance [tex]\( r \)[/tex]. First, we'll rearrange the formula to solve for [tex]\( r \)[/tex]:

[tex]\[ r = \sqrt{\frac{L}{4 \pi AB}} \][/tex]

Now, let's plug in the known values:

[tex]\[ r = \sqrt{\frac{3.8 \times 10^{26}}{4 \pi \times 1.0 \times 10^{-10}}} \][/tex]

[tex]\[ r = \sqrt{\frac{3.8 \times 10^{26}}{4 \pi \times 10^{-10}}} \][/tex]

Notice that:

[tex]\[ 4 \pi \approx 12.566 \][/tex]

[tex]\[ r = \sqrt{\frac{3.8 \times 10^{26}}{12.566 \times 10^{-10}}} \][/tex]

[tex]\[ r = \sqrt{\frac{3.8 \times 10^{26}}{1.2566 \times 10^{-9}}} \][/tex]

[tex]\[ r = \sqrt{3.0241 \times 10^{35}} \][/tex]

[tex]\[ r \approx 5.499 \times 10^{17} \, \text{meters} \][/tex]

So, the correct distance to the star is approximately [tex]\( 5.499 \times 10^{17} \)[/tex] meters.

Among the given options, the correct one is:

[tex]\[ 5.499 \times 10^{17} \, \text{m} \][/tex]