IDNLearn.com: Your destination for reliable and timely answers to any question. Whether it's a simple query or a complex problem, our experts have the answers you need.
Sagot :
Alright, let's solve the problem using the given formula for apparent brightness.
Given:
- Apparent Brightness [tex]\((A B) = 3.2 \times 10^{-10} \text{ watt/m}^2\)[/tex]
- Distance [tex]\(r = 3 \times 10^{17} \text{ meters}\)[/tex]
The formula for apparent brightness is:
[tex]\[ A B = \frac{L}{4 \pi r^2} \][/tex]
Where:
- [tex]\(A B\)[/tex] is the apparent brightness
- [tex]\(L\)[/tex] is the luminosity
- [tex]\(r\)[/tex] is the distance
We need to find the luminosity [tex]\(L\)[/tex]. We can rearrange the formula to solve for [tex]\(L\)[/tex]:
[tex]\[ L = A B \times 4 \pi r^2 \][/tex]
Now, let’s plug in the given values:
[tex]\[ L = (3.2 \times 10^{-10} \text{ watt/m}^2) \times 4 \pi (3 \times 10^{17} \text{ meters})^2 \][/tex]
Let's break it down step-by-step:
1. Calculate the distance squared:
[tex]\[ r^2 = (3 \times 10^{17} \text{ meters})^2 = 9 \times 10^{34} \text{ meters}^2 \][/tex]
2. Multiply by [tex]\(4 \pi\)[/tex]:
[tex]\[ 4 \pi r^2 = 4 \pi \times 9 \times 10^{34} \text{ meters}^2 \][/tex]
Using the approximation [tex]\(\pi \approx 3.141592\)[/tex]:
[tex]\[ 4 \pi \approx 12.5664 \][/tex]
[tex]\[ 4 \pi \times 9 \times 10^{34} = 12.5664 \times 9 \times 10^{34} \approx 113.0976 \times 10^{34} \][/tex]
[tex]\[ 113.0976 \times 10^{34} = 1.130976 \times 10^{36} \][/tex]
3. Multiply by the apparent brightness:
[tex]\[ L = 3.2 \times 10^{-10} \text{ watt/m}^2 \times 1.130976 \times 10^{36} \text{ meters}^2 = 3.6191248 \times 10^{26} \text{ watts} \][/tex]
After rounding off to match the options provided, we get:
[tex]\[ L \approx 3.619 \times 10^{26} \text{ watts} \][/tex]
Thus, the luminosity of the star is:
[tex]\[ \boxed{3.619 \times 10^{26} \text{ watts}} \][/tex]
Given:
- Apparent Brightness [tex]\((A B) = 3.2 \times 10^{-10} \text{ watt/m}^2\)[/tex]
- Distance [tex]\(r = 3 \times 10^{17} \text{ meters}\)[/tex]
The formula for apparent brightness is:
[tex]\[ A B = \frac{L}{4 \pi r^2} \][/tex]
Where:
- [tex]\(A B\)[/tex] is the apparent brightness
- [tex]\(L\)[/tex] is the luminosity
- [tex]\(r\)[/tex] is the distance
We need to find the luminosity [tex]\(L\)[/tex]. We can rearrange the formula to solve for [tex]\(L\)[/tex]:
[tex]\[ L = A B \times 4 \pi r^2 \][/tex]
Now, let’s plug in the given values:
[tex]\[ L = (3.2 \times 10^{-10} \text{ watt/m}^2) \times 4 \pi (3 \times 10^{17} \text{ meters})^2 \][/tex]
Let's break it down step-by-step:
1. Calculate the distance squared:
[tex]\[ r^2 = (3 \times 10^{17} \text{ meters})^2 = 9 \times 10^{34} \text{ meters}^2 \][/tex]
2. Multiply by [tex]\(4 \pi\)[/tex]:
[tex]\[ 4 \pi r^2 = 4 \pi \times 9 \times 10^{34} \text{ meters}^2 \][/tex]
Using the approximation [tex]\(\pi \approx 3.141592\)[/tex]:
[tex]\[ 4 \pi \approx 12.5664 \][/tex]
[tex]\[ 4 \pi \times 9 \times 10^{34} = 12.5664 \times 9 \times 10^{34} \approx 113.0976 \times 10^{34} \][/tex]
[tex]\[ 113.0976 \times 10^{34} = 1.130976 \times 10^{36} \][/tex]
3. Multiply by the apparent brightness:
[tex]\[ L = 3.2 \times 10^{-10} \text{ watt/m}^2 \times 1.130976 \times 10^{36} \text{ meters}^2 = 3.6191248 \times 10^{26} \text{ watts} \][/tex]
After rounding off to match the options provided, we get:
[tex]\[ L \approx 3.619 \times 10^{26} \text{ watts} \][/tex]
Thus, the luminosity of the star is:
[tex]\[ \boxed{3.619 \times 10^{26} \text{ watts}} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com for your queries. We’re here to provide accurate answers, so visit us again soon.