Find the best solutions to your problems with the help of IDNLearn.com's experts. Get accurate and detailed answers to your questions from our knowledgeable and dedicated community members.

Use the Luminosity Distance Formula.

You measure the apparent brightness of a particular star to be [tex]\(3.2 \times 10^{-10} \text{ watt/m}^2\)[/tex]. A parallax measurement shows the star's distance to be 31 light-years, or about [tex]\(3 \times 10^{17} \text{ meters}\)[/tex]. What is the luminosity of the star?

Formula: Apparent Brightness [tex]\((AB) = \frac{\text{Luminosity}}{4 \pi r^2}\)[/tex]

A. [tex]\(4.601 \times 10^{-26} \text{ watts}\)[/tex]
B. [tex]\(3.619 \times 10^{-26} \text{ watts}\)[/tex]
C. [tex]\(4.601 \times 10^{26} \text{ watts}\)[/tex]
D. [tex]\(3.619 \times 10^{26} \text{ watts}\)[/tex]


Sagot :

Alright, let's solve the problem using the given formula for apparent brightness.

Given:
- Apparent Brightness [tex]\((A B) = 3.2 \times 10^{-10} \text{ watt/m}^2\)[/tex]
- Distance [tex]\(r = 3 \times 10^{17} \text{ meters}\)[/tex]

The formula for apparent brightness is:

[tex]\[ A B = \frac{L}{4 \pi r^2} \][/tex]

Where:
- [tex]\(A B\)[/tex] is the apparent brightness
- [tex]\(L\)[/tex] is the luminosity
- [tex]\(r\)[/tex] is the distance

We need to find the luminosity [tex]\(L\)[/tex]. We can rearrange the formula to solve for [tex]\(L\)[/tex]:

[tex]\[ L = A B \times 4 \pi r^2 \][/tex]

Now, let’s plug in the given values:

[tex]\[ L = (3.2 \times 10^{-10} \text{ watt/m}^2) \times 4 \pi (3 \times 10^{17} \text{ meters})^2 \][/tex]

Let's break it down step-by-step:

1. Calculate the distance squared:

[tex]\[ r^2 = (3 \times 10^{17} \text{ meters})^2 = 9 \times 10^{34} \text{ meters}^2 \][/tex]

2. Multiply by [tex]\(4 \pi\)[/tex]:

[tex]\[ 4 \pi r^2 = 4 \pi \times 9 \times 10^{34} \text{ meters}^2 \][/tex]

Using the approximation [tex]\(\pi \approx 3.141592\)[/tex]:

[tex]\[ 4 \pi \approx 12.5664 \][/tex]

[tex]\[ 4 \pi \times 9 \times 10^{34} = 12.5664 \times 9 \times 10^{34} \approx 113.0976 \times 10^{34} \][/tex]

[tex]\[ 113.0976 \times 10^{34} = 1.130976 \times 10^{36} \][/tex]

3. Multiply by the apparent brightness:

[tex]\[ L = 3.2 \times 10^{-10} \text{ watt/m}^2 \times 1.130976 \times 10^{36} \text{ meters}^2 = 3.6191248 \times 10^{26} \text{ watts} \][/tex]

After rounding off to match the options provided, we get:

[tex]\[ L \approx 3.619 \times 10^{26} \text{ watts} \][/tex]

Thus, the luminosity of the star is:

[tex]\[ \boxed{3.619 \times 10^{26} \text{ watts}} \][/tex]