Connect with a global community of experts on IDNLearn.com. Discover prompt and accurate answers from our community of experienced professionals.
Sagot :
To find the distance to the star given its luminosity [tex]\( L \)[/tex] and apparent brightness [tex]\( AB \)[/tex], we will use the luminosity distance formula:
[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]
where:
- [tex]\( L \)[/tex] is the luminosity of the star,
- [tex]\( AB \)[/tex] is the apparent brightness at Earth,
- [tex]\( r \)[/tex] is the distance from the star to Earth.
Given:
- Luminosity [tex]\( L = 2.7 \times 10^{26} \)[/tex] watts,
- Apparent brightness [tex]\( AB = 1.0 \times 10^{-10} \)[/tex] watts/m[tex]\(^2\)[/tex].
First, let's rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]
Rearranging to solve for [tex]\( r^2 \)[/tex]:
[tex]\[ 4 \pi r^2 = \frac{L}{AB} \][/tex]
[tex]\[ r^2 = \frac{L}{4 \pi AB} \][/tex]
To find [tex]\( r \)[/tex], we take the square root of both sides:
[tex]\[ r = \sqrt{\frac{L}{4 \pi AB}} \][/tex]
Now, plug in the given values for [tex]\( L \)[/tex] and [tex]\( AB \)[/tex]:
[tex]\[ r = \sqrt{\frac{2.7 \times 10^{26} \text{ W}}{4 \pi \times 1.0 \times 10^{-10} \text{ W/m}^2}} \][/tex]
Next, calculate the denominator [tex]\( 4 \pi \times 1.0 \times 10^{-10} \)[/tex]:
[tex]\[ 4 \pi \times 1.0 \times 10^{-10} = 1.256637061 \times 10^{-9} \][/tex]
Now, perform the division:
[tex]\[ \frac{2.7 \times 10^{26}}{1.256637061 \times 10^{-9}} \approx 2.149999999 \times 10^{35} \][/tex]
Take the square root of the result:
[tex]\[ r = \sqrt{2.149999999 \times 10^{35}} \approx 4.63529 \times 10^{17} \text{ meters} \][/tex]
So, the calculated distance to the star is approximately [tex]\( 4.635 \times 10^{17} \text{ meters} \)[/tex].
Given the options:
- [tex]\( 3.570 \times 10^{-17} \text{ meters} \)[/tex]
- [tex]\( 3.570 \times 10^{17} \text{ meters} \)[/tex]
- [tex]\( 4.635 \times 10^{-17} \text{ meters} \)[/tex]
- [tex]\( 4.635 \times 10^{17} \text{ meters} \)[/tex]
The correct answer is [tex]\( 4.635 \times 10^{17} \text{ meters} \)[/tex].
[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]
where:
- [tex]\( L \)[/tex] is the luminosity of the star,
- [tex]\( AB \)[/tex] is the apparent brightness at Earth,
- [tex]\( r \)[/tex] is the distance from the star to Earth.
Given:
- Luminosity [tex]\( L = 2.7 \times 10^{26} \)[/tex] watts,
- Apparent brightness [tex]\( AB = 1.0 \times 10^{-10} \)[/tex] watts/m[tex]\(^2\)[/tex].
First, let's rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]
Rearranging to solve for [tex]\( r^2 \)[/tex]:
[tex]\[ 4 \pi r^2 = \frac{L}{AB} \][/tex]
[tex]\[ r^2 = \frac{L}{4 \pi AB} \][/tex]
To find [tex]\( r \)[/tex], we take the square root of both sides:
[tex]\[ r = \sqrt{\frac{L}{4 \pi AB}} \][/tex]
Now, plug in the given values for [tex]\( L \)[/tex] and [tex]\( AB \)[/tex]:
[tex]\[ r = \sqrt{\frac{2.7 \times 10^{26} \text{ W}}{4 \pi \times 1.0 \times 10^{-10} \text{ W/m}^2}} \][/tex]
Next, calculate the denominator [tex]\( 4 \pi \times 1.0 \times 10^{-10} \)[/tex]:
[tex]\[ 4 \pi \times 1.0 \times 10^{-10} = 1.256637061 \times 10^{-9} \][/tex]
Now, perform the division:
[tex]\[ \frac{2.7 \times 10^{26}}{1.256637061 \times 10^{-9}} \approx 2.149999999 \times 10^{35} \][/tex]
Take the square root of the result:
[tex]\[ r = \sqrt{2.149999999 \times 10^{35}} \approx 4.63529 \times 10^{17} \text{ meters} \][/tex]
So, the calculated distance to the star is approximately [tex]\( 4.635 \times 10^{17} \text{ meters} \)[/tex].
Given the options:
- [tex]\( 3.570 \times 10^{-17} \text{ meters} \)[/tex]
- [tex]\( 3.570 \times 10^{17} \text{ meters} \)[/tex]
- [tex]\( 4.635 \times 10^{-17} \text{ meters} \)[/tex]
- [tex]\( 4.635 \times 10^{17} \text{ meters} \)[/tex]
The correct answer is [tex]\( 4.635 \times 10^{17} \text{ meters} \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.