IDNLearn.com provides a seamless experience for finding and sharing answers. Discover detailed answers to your questions with our extensive database of expert knowledge.
Sagot :
Sure, let's go through the process step-by-step to find the value of [tex]\(\sin(\theta)\)[/tex].
Given:
[tex]\[ \tan(\theta) = \frac{5 \sqrt{11}}{11} \][/tex]
### Step 1: Understand the Relationship Between [tex]\(\sin(\theta)\)[/tex] and [tex]\(\cos(\theta)\)[/tex]
Recall the definition of tangent:
[tex]\[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \][/tex]
Given [tex]\(\theta\)[/tex] is in quadrant III where both sine and cosine are negative, we can represent:
[tex]\[ \tan(\theta) = \frac{-a}{-b} = \frac{a}{b} \][/tex]
where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are positive.
### Step 2: Calculate [tex]\(\tan^2\theta\)[/tex]
First, find [tex]\(\tan^2(\theta)\)[/tex]:
[tex]\[ \tan^2(\theta) = \left(\frac{5 \sqrt{11}}{11}\right)^2 = \frac{25 \cdot 11}{121} = \frac{275}{121} \approx 2.2727272727272725 \][/tex]
### Step 3: Use the Pythagorean Identity
We use the identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
We represent [tex]\(\sin(\theta)\)[/tex] as [tex]\(-a\)[/tex] and [tex]\(\cos(\theta)\)[/tex] as [tex]\(-b\)[/tex], thus:
[tex]\[ (-a)^2 + (-b)^2 = 1 \implies a^2 + b^2 = 1 \][/tex]
### Step 4: Solve for [tex]\(\cos(\theta)\)[/tex] in Terms of [tex]\(\tan(\theta)\)[/tex]
Since [tex]\(\tan(\theta) = \frac{a}{b}\)[/tex]:
[tex]\[ a = \tan(\theta) \cdot b \][/tex]
Substitute [tex]\(a = \tan(\theta) \cdot b\)[/tex] into [tex]\(a^2 + b^2 = 1\)[/tex]:
[tex]\[ (\tan(\theta) \cdot b)^2 + b^2 = 1 \][/tex]
[tex]\[ \tan^2(\theta) \cdot b^2 + b^2 = 1 \][/tex]
[tex]\[ b^2 (\tan^2(\theta) + 1) = 1 \][/tex]
### Step 5: Solve for [tex]\(\cos(\theta)\)[/tex]
[tex]\[ b^2 = \frac{1}{\tan^2(\theta) + 1} \][/tex]
Given [tex]\( \tan^2(\theta) \approx 2.2727272727272725 \)[/tex]:
[tex]\[ b^2 = \frac{1}{2.2727272727272725 + 1} = \frac{1}{3.2727272727272725} \approx 0.3055555555555556 \][/tex]
[tex]\[ b \approx \sqrt{0.3055555555555556} \approx 0.5527707983925667 \][/tex]
### Step 6: Solve for [tex]\(\sin(\theta)\)[/tex]
[tex]\[ a = \tan(\theta) \cdot b \approx 1.507556722888818 \cdot 0.5527707983925667 \approx 0.8333333333333334 \][/tex]
Therefore, since [tex]\(\sin(\theta) = -a\)[/tex] in quadrant III:
[tex]\[ \sin(\theta) \approx -0.8333333333333334 \][/tex]
Thus, the value of [tex]\(\sin(\theta)\)[/tex] is closer to [tex]\( -\frac{5}{6} \)[/tex], making the correct answer:
[tex]\[ \boxed{-\frac{5}{6}} \][/tex]
Given:
[tex]\[ \tan(\theta) = \frac{5 \sqrt{11}}{11} \][/tex]
### Step 1: Understand the Relationship Between [tex]\(\sin(\theta)\)[/tex] and [tex]\(\cos(\theta)\)[/tex]
Recall the definition of tangent:
[tex]\[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \][/tex]
Given [tex]\(\theta\)[/tex] is in quadrant III where both sine and cosine are negative, we can represent:
[tex]\[ \tan(\theta) = \frac{-a}{-b} = \frac{a}{b} \][/tex]
where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are positive.
### Step 2: Calculate [tex]\(\tan^2\theta\)[/tex]
First, find [tex]\(\tan^2(\theta)\)[/tex]:
[tex]\[ \tan^2(\theta) = \left(\frac{5 \sqrt{11}}{11}\right)^2 = \frac{25 \cdot 11}{121} = \frac{275}{121} \approx 2.2727272727272725 \][/tex]
### Step 3: Use the Pythagorean Identity
We use the identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
We represent [tex]\(\sin(\theta)\)[/tex] as [tex]\(-a\)[/tex] and [tex]\(\cos(\theta)\)[/tex] as [tex]\(-b\)[/tex], thus:
[tex]\[ (-a)^2 + (-b)^2 = 1 \implies a^2 + b^2 = 1 \][/tex]
### Step 4: Solve for [tex]\(\cos(\theta)\)[/tex] in Terms of [tex]\(\tan(\theta)\)[/tex]
Since [tex]\(\tan(\theta) = \frac{a}{b}\)[/tex]:
[tex]\[ a = \tan(\theta) \cdot b \][/tex]
Substitute [tex]\(a = \tan(\theta) \cdot b\)[/tex] into [tex]\(a^2 + b^2 = 1\)[/tex]:
[tex]\[ (\tan(\theta) \cdot b)^2 + b^2 = 1 \][/tex]
[tex]\[ \tan^2(\theta) \cdot b^2 + b^2 = 1 \][/tex]
[tex]\[ b^2 (\tan^2(\theta) + 1) = 1 \][/tex]
### Step 5: Solve for [tex]\(\cos(\theta)\)[/tex]
[tex]\[ b^2 = \frac{1}{\tan^2(\theta) + 1} \][/tex]
Given [tex]\( \tan^2(\theta) \approx 2.2727272727272725 \)[/tex]:
[tex]\[ b^2 = \frac{1}{2.2727272727272725 + 1} = \frac{1}{3.2727272727272725} \approx 0.3055555555555556 \][/tex]
[tex]\[ b \approx \sqrt{0.3055555555555556} \approx 0.5527707983925667 \][/tex]
### Step 6: Solve for [tex]\(\sin(\theta)\)[/tex]
[tex]\[ a = \tan(\theta) \cdot b \approx 1.507556722888818 \cdot 0.5527707983925667 \approx 0.8333333333333334 \][/tex]
Therefore, since [tex]\(\sin(\theta) = -a\)[/tex] in quadrant III:
[tex]\[ \sin(\theta) \approx -0.8333333333333334 \][/tex]
Thus, the value of [tex]\(\sin(\theta)\)[/tex] is closer to [tex]\( -\frac{5}{6} \)[/tex], making the correct answer:
[tex]\[ \boxed{-\frac{5}{6}} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.