Find answers to your questions faster and easier with IDNLearn.com. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
To determine the inflection points of the function [tex]\( f(x) = 12x^5 + 45x^4 - 80x^3 + 6 \)[/tex], follow these steps:
1. Find the second derivative of the function:
- First, calculate the first derivative [tex]\( f'(x) \)[/tex].
[tex]\[ f'(x) = \frac{d}{dx} (12x^5 + 45x^4 - 80x^3 + 6) = 60x^4 + 180x^3 - 240x^2 \][/tex]
- Next, find the second derivative [tex]\( f''(x) \)[/tex].
[tex]\[ f''(x) = \frac{d}{dx} (60x^4 + 180x^3 - 240x^2) = 240x^3 + 540x^2 - 480x \][/tex]
2. Set the second derivative equal to zero to find potential inflection points:
[tex]\[ 240x^3 + 540x^2 - 480x = 0 \][/tex]
Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x (240x^2 + 540x - 480) = 0 \][/tex]
This gives us one solution immediately:
[tex]\[ x = 0 \][/tex]
3. Solve the quadratic equation [tex]\( 240x^2 + 540x - 480 = 0 \)[/tex]:
Simplify the equation by dividing by 60:
[tex]\[ 4x^2 + 9x - 8 = 0 \][/tex]
Use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 4 \)[/tex], [tex]\( b = 9 \)[/tex], and [tex]\( c = -8 \)[/tex]:
[tex]\[ x = \frac{-9 \pm \sqrt{81 + 128}}{8} = \frac{-9 \pm \sqrt{209}}{8} \][/tex]
This yields two solutions:
[tex]\[ x = \frac{-9 + \sqrt{209}}{8} \][/tex]
[tex]\[ x = \frac{-9 - \sqrt{209}}{8} \][/tex]
4. Converting the results into numerical values and ordering them:
- The roots can be approximated numerically:
[tex]\[ \frac{-9 - \sqrt{209}}{8} \approx -2.9321 \][/tex]
[tex]\[ \frac{-9 + \sqrt{209}}{8} \approx 0.63 \][/tex]
5. Summarizing the inflection points:
- The first root delivers an inflection point approximately at [tex]\( -2.9321 \)[/tex].
- The second root provides an inflection point approximately at 0.
- The third root gives an inflection point approximately at 0.63.
Therefore, listing the inflection points from left to right, we have:
- [tex]\(x = \frac{-9 - \sqrt{209}}{8} \approx -2.93\)[/tex] (though the problem states [tex]\( -2.88 \)[/tex] which might be a rounding inconsistency to manual calculations)
- [tex]\( x = 0 \)[/tex]
- [tex]\( x = \frac{-9 + \sqrt{209}}{8} \approx 0.63 \)[/tex]
Hence, filling in the boxes and correcting the response:
- For [tex]\( D \)[/tex], we should have [tex]\( -2.9321 \)[/tex].
- For [tex]\( E \)[/tex], we have the exact [tex]\( 0 \)[/tex].
- For [tex]\( F \)[/tex], we have [tex]\( 0.63 \)[/tex].
So, the corrected and precise inflection points are:
[tex]\( D \approx -2.9321 \)[/tex], [tex]\( E = 0 \)[/tex], and [tex]\( F \approx 0.63 \)[/tex].
1. Find the second derivative of the function:
- First, calculate the first derivative [tex]\( f'(x) \)[/tex].
[tex]\[ f'(x) = \frac{d}{dx} (12x^5 + 45x^4 - 80x^3 + 6) = 60x^4 + 180x^3 - 240x^2 \][/tex]
- Next, find the second derivative [tex]\( f''(x) \)[/tex].
[tex]\[ f''(x) = \frac{d}{dx} (60x^4 + 180x^3 - 240x^2) = 240x^3 + 540x^2 - 480x \][/tex]
2. Set the second derivative equal to zero to find potential inflection points:
[tex]\[ 240x^3 + 540x^2 - 480x = 0 \][/tex]
Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x (240x^2 + 540x - 480) = 0 \][/tex]
This gives us one solution immediately:
[tex]\[ x = 0 \][/tex]
3. Solve the quadratic equation [tex]\( 240x^2 + 540x - 480 = 0 \)[/tex]:
Simplify the equation by dividing by 60:
[tex]\[ 4x^2 + 9x - 8 = 0 \][/tex]
Use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 4 \)[/tex], [tex]\( b = 9 \)[/tex], and [tex]\( c = -8 \)[/tex]:
[tex]\[ x = \frac{-9 \pm \sqrt{81 + 128}}{8} = \frac{-9 \pm \sqrt{209}}{8} \][/tex]
This yields two solutions:
[tex]\[ x = \frac{-9 + \sqrt{209}}{8} \][/tex]
[tex]\[ x = \frac{-9 - \sqrt{209}}{8} \][/tex]
4. Converting the results into numerical values and ordering them:
- The roots can be approximated numerically:
[tex]\[ \frac{-9 - \sqrt{209}}{8} \approx -2.9321 \][/tex]
[tex]\[ \frac{-9 + \sqrt{209}}{8} \approx 0.63 \][/tex]
5. Summarizing the inflection points:
- The first root delivers an inflection point approximately at [tex]\( -2.9321 \)[/tex].
- The second root provides an inflection point approximately at 0.
- The third root gives an inflection point approximately at 0.63.
Therefore, listing the inflection points from left to right, we have:
- [tex]\(x = \frac{-9 - \sqrt{209}}{8} \approx -2.93\)[/tex] (though the problem states [tex]\( -2.88 \)[/tex] which might be a rounding inconsistency to manual calculations)
- [tex]\( x = 0 \)[/tex]
- [tex]\( x = \frac{-9 + \sqrt{209}}{8} \approx 0.63 \)[/tex]
Hence, filling in the boxes and correcting the response:
- For [tex]\( D \)[/tex], we should have [tex]\( -2.9321 \)[/tex].
- For [tex]\( E \)[/tex], we have the exact [tex]\( 0 \)[/tex].
- For [tex]\( F \)[/tex], we have [tex]\( 0.63 \)[/tex].
So, the corrected and precise inflection points are:
[tex]\( D \approx -2.9321 \)[/tex], [tex]\( E = 0 \)[/tex], and [tex]\( F \approx 0.63 \)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.