Explore a diverse range of topics and get answers from knowledgeable individuals on IDNLearn.com. Whether it's a simple query or a complex problem, our community has the answers you need.
Sagot :
To solve this problem, we will use Coulomb's Law to find the forces between the charges and determine the net force on [tex]\( q_1 \)[/tex]. Here are the step-by-step details:
### Given Data:
Charges:
- [tex]\( q_1 = 4.44 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = -4.44 \times 10^{-6} \, \text{C} \)[/tex] (opposite charge)
- [tex]\( q_3 = 4.44 \times 10^{-6} \, \text{C} \)[/tex] (same charge as [tex]\( q_1 \)[/tex])
Distances:
- Distance between [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex], [tex]\( r_{12} = 0.02 \, \text{m} \)[/tex]
- Distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex], [tex]\( r_{13} = 0.04 \, \text{m} \)[/tex]
Coulomb's Constant:
- [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]
### Step 1: Calculate the Force [tex]\( F_2 \)[/tex] Exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_1 \)[/tex]
Using Coulomb's Law:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r_{12}^2} \][/tex]
Given:
[tex]\[ q_1 = 4.44 \times 10^{-6} \, \text{C}, \quad q_2 = -4.44 \times 10^{-6} \, \text{C}, \quad r_{12} = 0.02 \, \text{m} \][/tex]
We get:
[tex]\[ F_2 = 8.99 \times 10^9 \cdot \frac{|4.44 \times 10^{-6} \cdot (-4.44 \times 10^{-6})|}{(0.02)^2} \][/tex]
Calculating the magnitude of [tex]\( F_2 \)[/tex], we find [tex]\( F_2 = 443.06316 \, \text{N} \)[/tex].
Since [tex]\( q_2 \)[/tex] is negative and [tex]\( q_1 \)[/tex] is positive, the force [tex]\( F_2 \)[/tex] is attractive, which means it is directed to the left. Therefore:
[tex]\[ F_2 = -443.06316 \, \text{N} \][/tex]
### Step 2: Calculate the Force [tex]\( F_3 \)[/tex] Exerted by [tex]\( q_3 \)[/tex] on [tex]\( q_1 \)[/tex]
Again, using Coulomb's Law:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_3|}{r_{13}^2} \][/tex]
Given:
[tex]\[ q_1 = 4.44 \times 10^{-6} \, \text{C}, \quad q_3 = 4.44 \times 10^{-6} \, \text{C}, \quad r_{13} = 0.04 \, \text{m} \][/tex]
We get:
[tex]\[ F_3 = 8.99 \times 10^9 \cdot \frac{|4.44 \times 10^{-6} \cdot 4.44 \times 10^{-6}|}{(0.04)^2} \][/tex]
Calculating the magnitude of [tex]\( F_3 \)[/tex], we find [tex]\( F_3 = 110.76579 \, \text{N} \)[/tex].
Since both [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] are positive, the force [tex]\( F_3 \)[/tex] is repulsive, which means it is directed to the right. Therefore:
[tex]\[ F_3 = 110.76579 \, \text{N} \][/tex]
### Step 3: Calculate the Net Force [tex]\( \vec{F} \)[/tex] on [tex]\( q_1 \)[/tex]
The net force is the sum of the individual forces, taking direction into account:
[tex]\[ \vec{F} = F_2 + F_3 \][/tex]
Substituting the values:
[tex]\[ \vec{F} = -443.06316 \, \text{N} + 110.76579 \, \text{N} \][/tex]
Calculating the net force, we get:
[tex]\[ \vec{F} = -332.29737 \, \text{N} \][/tex]
Hence, the solution is:
- [tex]\( \vec{F}_2 = -443.06316 \, \text{N} \)[/tex]
- [tex]\( \vec{F}_3 = 110.76579 \, \text{N} \)[/tex]
- Net force on [tex]\( q_1 \)[/tex], [tex]\( \vec{F} = -332.29737 \, \text{N} \)[/tex]
This means the net force on [tex]\( q_1 \)[/tex] is directed to the left with a magnitude of [tex]\( 332.29737 \, \text{N} \)[/tex].
### Given Data:
Charges:
- [tex]\( q_1 = 4.44 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = -4.44 \times 10^{-6} \, \text{C} \)[/tex] (opposite charge)
- [tex]\( q_3 = 4.44 \times 10^{-6} \, \text{C} \)[/tex] (same charge as [tex]\( q_1 \)[/tex])
Distances:
- Distance between [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex], [tex]\( r_{12} = 0.02 \, \text{m} \)[/tex]
- Distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex], [tex]\( r_{13} = 0.04 \, \text{m} \)[/tex]
Coulomb's Constant:
- [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]
### Step 1: Calculate the Force [tex]\( F_2 \)[/tex] Exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_1 \)[/tex]
Using Coulomb's Law:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r_{12}^2} \][/tex]
Given:
[tex]\[ q_1 = 4.44 \times 10^{-6} \, \text{C}, \quad q_2 = -4.44 \times 10^{-6} \, \text{C}, \quad r_{12} = 0.02 \, \text{m} \][/tex]
We get:
[tex]\[ F_2 = 8.99 \times 10^9 \cdot \frac{|4.44 \times 10^{-6} \cdot (-4.44 \times 10^{-6})|}{(0.02)^2} \][/tex]
Calculating the magnitude of [tex]\( F_2 \)[/tex], we find [tex]\( F_2 = 443.06316 \, \text{N} \)[/tex].
Since [tex]\( q_2 \)[/tex] is negative and [tex]\( q_1 \)[/tex] is positive, the force [tex]\( F_2 \)[/tex] is attractive, which means it is directed to the left. Therefore:
[tex]\[ F_2 = -443.06316 \, \text{N} \][/tex]
### Step 2: Calculate the Force [tex]\( F_3 \)[/tex] Exerted by [tex]\( q_3 \)[/tex] on [tex]\( q_1 \)[/tex]
Again, using Coulomb's Law:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_3|}{r_{13}^2} \][/tex]
Given:
[tex]\[ q_1 = 4.44 \times 10^{-6} \, \text{C}, \quad q_3 = 4.44 \times 10^{-6} \, \text{C}, \quad r_{13} = 0.04 \, \text{m} \][/tex]
We get:
[tex]\[ F_3 = 8.99 \times 10^9 \cdot \frac{|4.44 \times 10^{-6} \cdot 4.44 \times 10^{-6}|}{(0.04)^2} \][/tex]
Calculating the magnitude of [tex]\( F_3 \)[/tex], we find [tex]\( F_3 = 110.76579 \, \text{N} \)[/tex].
Since both [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] are positive, the force [tex]\( F_3 \)[/tex] is repulsive, which means it is directed to the right. Therefore:
[tex]\[ F_3 = 110.76579 \, \text{N} \][/tex]
### Step 3: Calculate the Net Force [tex]\( \vec{F} \)[/tex] on [tex]\( q_1 \)[/tex]
The net force is the sum of the individual forces, taking direction into account:
[tex]\[ \vec{F} = F_2 + F_3 \][/tex]
Substituting the values:
[tex]\[ \vec{F} = -443.06316 \, \text{N} + 110.76579 \, \text{N} \][/tex]
Calculating the net force, we get:
[tex]\[ \vec{F} = -332.29737 \, \text{N} \][/tex]
Hence, the solution is:
- [tex]\( \vec{F}_2 = -443.06316 \, \text{N} \)[/tex]
- [tex]\( \vec{F}_3 = 110.76579 \, \text{N} \)[/tex]
- Net force on [tex]\( q_1 \)[/tex], [tex]\( \vec{F} = -332.29737 \, \text{N} \)[/tex]
This means the net force on [tex]\( q_1 \)[/tex] is directed to the left with a magnitude of [tex]\( 332.29737 \, \text{N} \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.