IDNLearn.com is the perfect place to get detailed and accurate answers to your questions. Discover in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
Sure! Let's break down the problem step-by-step to determine the time the projectile is in the air.
### Step-by-Step Solution
1. Given Data:
- Mass of the projectile, [tex]\( m = 200 \)[/tex] g = [tex]\( 0.2 \)[/tex] kg (converted to kilograms).
- Maximum vertical distance (height), [tex]\( h = 10 \)[/tex] m.
- Launch angle, [tex]\( \theta = 30^\circ \)[/tex].
2. Convert the launch angle to radians:
[tex]\[ \theta_{rad} = \theta \times \frac{\pi}{180} = 30 \times \frac{\pi}{180} = 0.5236 \, \text{radians} \][/tex]
3. Vertical Component of the Initial Velocity:
We use the kinematic equation for vertical motion to find the initial velocity component in the vertical direction, [tex]\( v_{y0} \)[/tex]. The formula for maximum height is:
[tex]\[ h = \frac{v_{y0}^2}{2g} \][/tex]
where [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]. Rearranging for [tex]\( v_{y0} \)[/tex] gives:
[tex]\[ v_{y0} = \sqrt{2gh} = \sqrt{2 \times 9.81 \times 10} = 14.007 \, \text{m/s} \][/tex]
4. Initial Velocity ( [tex]\( v_{0} \)[/tex] ):
Knowing the vertical component [tex]\( v_{y0} \)[/tex] and the launch angle [tex]\( \theta \)[/tex], we can find the initial velocity [tex]\( v_{0} \)[/tex]:
[tex]\[ v_{y0} = v_{0} \sin(\theta) \][/tex]
Solving for [tex]\( v_{0} \)[/tex]:
[tex]\[ v_{0} = \frac{v_{y0}}{\sin(\theta)} = \frac{14.007}{\sin(0.5236)} = 28.014 \, \text{m/s} \][/tex]
5. Total Time of Flight:
The time of flight [tex]\( T \)[/tex] for a projectile is given by:
[tex]\[ T = \frac{2v_{0} \sin(\theta)}{g} \][/tex]
Substituting the values:
[tex]\[ T = \frac{2 \times 28.014 \times \sin(0.5236)}{9.81} = 2.856 \, \text{seconds} \][/tex]
Conclusion:
The time the projectile will be in the air is 2.856 seconds.
### Step-by-Step Solution
1. Given Data:
- Mass of the projectile, [tex]\( m = 200 \)[/tex] g = [tex]\( 0.2 \)[/tex] kg (converted to kilograms).
- Maximum vertical distance (height), [tex]\( h = 10 \)[/tex] m.
- Launch angle, [tex]\( \theta = 30^\circ \)[/tex].
2. Convert the launch angle to radians:
[tex]\[ \theta_{rad} = \theta \times \frac{\pi}{180} = 30 \times \frac{\pi}{180} = 0.5236 \, \text{radians} \][/tex]
3. Vertical Component of the Initial Velocity:
We use the kinematic equation for vertical motion to find the initial velocity component in the vertical direction, [tex]\( v_{y0} \)[/tex]. The formula for maximum height is:
[tex]\[ h = \frac{v_{y0}^2}{2g} \][/tex]
where [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]. Rearranging for [tex]\( v_{y0} \)[/tex] gives:
[tex]\[ v_{y0} = \sqrt{2gh} = \sqrt{2 \times 9.81 \times 10} = 14.007 \, \text{m/s} \][/tex]
4. Initial Velocity ( [tex]\( v_{0} \)[/tex] ):
Knowing the vertical component [tex]\( v_{y0} \)[/tex] and the launch angle [tex]\( \theta \)[/tex], we can find the initial velocity [tex]\( v_{0} \)[/tex]:
[tex]\[ v_{y0} = v_{0} \sin(\theta) \][/tex]
Solving for [tex]\( v_{0} \)[/tex]:
[tex]\[ v_{0} = \frac{v_{y0}}{\sin(\theta)} = \frac{14.007}{\sin(0.5236)} = 28.014 \, \text{m/s} \][/tex]
5. Total Time of Flight:
The time of flight [tex]\( T \)[/tex] for a projectile is given by:
[tex]\[ T = \frac{2v_{0} \sin(\theta)}{g} \][/tex]
Substituting the values:
[tex]\[ T = \frac{2 \times 28.014 \times \sin(0.5236)}{9.81} = 2.856 \, \text{seconds} \][/tex]
Conclusion:
The time the projectile will be in the air is 2.856 seconds.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Accurate answers are just a click away at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.