From science to arts, IDNLearn.com has the answers to all your questions. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.
Sagot :
To solve for the times when the spring is at a height of [tex]\( h = 8 \)[/tex] inches above equilibrium, we start with the given equation:
[tex]\[ h = -15 \cos \left(\frac{2 \pi}{5} t\right) \][/tex]
We want to find the values of [tex]\( t \)[/tex] when [tex]\( h = 8 \)[/tex]:
[tex]\[ 8 = -15 \cos \left(\frac{2 \pi}{5} t\right) \][/tex]
First, we isolate the cosine term by dividing both sides by [tex]\(-15\)[/tex]:
[tex]\[ \frac{8}{-15} = \cos \left(\frac{2 \pi}{5} t\right) \][/tex]
This simplifies to:
[tex]\[ -\frac{8}{15} = \cos \left(\frac{2 \pi}{5} t\right) \][/tex]
Now, we need to find the angle whose cosine is [tex]\(-\frac{8}{15}\)[/tex]. The principal angle [tex]\( \theta \)[/tex] for which the cosine is a certain value can be found using the inverse cosine function:
[tex]\[ \theta = \cos^{-1} \left(-\frac{8}{15}\right) \][/tex]
Once we have [tex]\( \theta \)[/tex], we need to solve for [tex]\( t \)[/tex] in the original equation argument:
[tex]\[ \frac{2 \pi t}{5} \][/tex]
We have two solutions:
1. [tex]\( \frac{2 \pi t}{5} = \theta \)[/tex]
2. [tex]\( \frac{2 \pi t}{5} = 2\pi - \theta \)[/tex]
Solving for [tex]\( t \)[/tex] in each case:
1. [tex]\( t_1 = \frac{5 \theta}{2 \pi} \)[/tex]
2. [tex]\( t_2 = \frac{5 (2\pi - \theta)}{2 \pi} = 5 - \frac{5 \theta}{2 \pi} \)[/tex]
Next, we compare these [tex]\( t \)[/tex]-values with the given times [tex]\( 4.2 \)[/tex] seconds, [tex]\( 1.7 \)[/tex] seconds, [tex]\( 2.9 \)[/tex] seconds, [tex]\( 0.8 \)[/tex] seconds, and [tex]\( 3.3 \)[/tex] seconds to see which of them satisfy our equations.
Upon evaluating:
- [tex]\( t_1 \approx 1.7 \)[/tex] seconds
- [tex]\( t_2 \approx 3.3 \)[/tex] seconds
Therefore, the times when the spring is at a height of [tex]\( 8 \)[/tex] inches are:
1.7 seconds and 3.3 seconds.
Thus, the correct answers are:
[tex]\[ \boxed{1.7 \ \text{seconds}, \ 3.3 \ \text{seconds}} \][/tex]
These are the times at which the spring will be at a height of 8 inches above equilibrium.
[tex]\[ h = -15 \cos \left(\frac{2 \pi}{5} t\right) \][/tex]
We want to find the values of [tex]\( t \)[/tex] when [tex]\( h = 8 \)[/tex]:
[tex]\[ 8 = -15 \cos \left(\frac{2 \pi}{5} t\right) \][/tex]
First, we isolate the cosine term by dividing both sides by [tex]\(-15\)[/tex]:
[tex]\[ \frac{8}{-15} = \cos \left(\frac{2 \pi}{5} t\right) \][/tex]
This simplifies to:
[tex]\[ -\frac{8}{15} = \cos \left(\frac{2 \pi}{5} t\right) \][/tex]
Now, we need to find the angle whose cosine is [tex]\(-\frac{8}{15}\)[/tex]. The principal angle [tex]\( \theta \)[/tex] for which the cosine is a certain value can be found using the inverse cosine function:
[tex]\[ \theta = \cos^{-1} \left(-\frac{8}{15}\right) \][/tex]
Once we have [tex]\( \theta \)[/tex], we need to solve for [tex]\( t \)[/tex] in the original equation argument:
[tex]\[ \frac{2 \pi t}{5} \][/tex]
We have two solutions:
1. [tex]\( \frac{2 \pi t}{5} = \theta \)[/tex]
2. [tex]\( \frac{2 \pi t}{5} = 2\pi - \theta \)[/tex]
Solving for [tex]\( t \)[/tex] in each case:
1. [tex]\( t_1 = \frac{5 \theta}{2 \pi} \)[/tex]
2. [tex]\( t_2 = \frac{5 (2\pi - \theta)}{2 \pi} = 5 - \frac{5 \theta}{2 \pi} \)[/tex]
Next, we compare these [tex]\( t \)[/tex]-values with the given times [tex]\( 4.2 \)[/tex] seconds, [tex]\( 1.7 \)[/tex] seconds, [tex]\( 2.9 \)[/tex] seconds, [tex]\( 0.8 \)[/tex] seconds, and [tex]\( 3.3 \)[/tex] seconds to see which of them satisfy our equations.
Upon evaluating:
- [tex]\( t_1 \approx 1.7 \)[/tex] seconds
- [tex]\( t_2 \approx 3.3 \)[/tex] seconds
Therefore, the times when the spring is at a height of [tex]\( 8 \)[/tex] inches are:
1.7 seconds and 3.3 seconds.
Thus, the correct answers are:
[tex]\[ \boxed{1.7 \ \text{seconds}, \ 3.3 \ \text{seconds}} \][/tex]
These are the times at which the spring will be at a height of 8 inches above equilibrium.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.