IDNLearn.com is designed to help you find reliable answers quickly and easily. Discover reliable answers to your questions with our extensive database of expert knowledge.

1. Calculate the enthalpy change for this reaction:
[tex]\[ 2C_{\text{(graphite)}} + H_{2(g)} \rightarrow C_2H_{2(g)} \][/tex]
based on the following reactions and the enthalpy changes:

(a) [tex]\( C_{\text{(graphite)}} + O_{2(g)} \rightarrow CO_{2(g)} \)[/tex]
[tex]\[ \Delta H^{\circ} = -393.5 \, \text{kJ} \][/tex]

(b) [tex]\( H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2O_{(l)} \)[/tex]
[tex]\[ \Delta H^{\circ} = -285.8 \, \text{kJ} \][/tex]

(c) [tex]\( 2C_2H_2_{(g)} + 5O_{2(g)} \rightarrow 4CO_{2(g)} + 2H_2O_{(l)} \)[/tex]
[tex]\[ \Delta H^{\circ} = -2598.8 \, \text{kJ} \][/tex]


Sagot :

To determine the enthalpy change ([tex]\(\Delta H\)[/tex]) for the reaction:
[tex]\[ 2 \text{C (graphite)} + \text{H}_2 (\text{g}) \rightarrow \text{C}_2\text{H}_2 (\text{g}), \][/tex]
we need to manipulate the given reactions and their enthalpy changes. Here are the given reactions with their enthalpy changes:

(a) [tex]\( \text{C (graphite)} + \text{O}_2 (\text{g}) \rightarrow \text{CO}_2 (\text{g}) \)[/tex] [tex]\(\Delta H^\circ = -393.5 \, \text{kJ}\)[/tex].

(b) [tex]\( \text{H}_2 (\text{g}) + \frac{1}{2} \text{O}_2 (\text{g}) \rightarrow \text{H}_2 \text{O (l)} \)[/tex] [tex]\(\Delta H^\circ = -285.8 \, \text{kJ}\)[/tex].

(c) [tex]\( 2 \text{C}_2\text{H}_2 (\text{g}) + 5 \text{O}_2 (\text{g}) \rightarrow 4 \text{CO}_2 (\text{g}) + 2 \text{H}_2\text{O (l)} \)[/tex] [tex]\(\Delta H^\circ = -2598.8 \, \text{kJ}\)[/tex].

First, we want to find the enthalpy change for the target reaction, [tex]\( 2 \text{C (graphite)} + \text{H}_2 (\text{g}) \rightarrow \text{C}_2\text{H}_2 (\text{g}) \)[/tex]. To do this, we need to somehow manipulate the given reactions to end up with our target reaction.

Let's analyze what we need to do:

1. We start by manipulating reaction (c):
- We need to reverse reaction (c) because in reaction (c), [tex]\(\text{C}_2\text{H}_2\)[/tex] is on the reactant side, but we need it on the product side.
- When reversing a reaction, the sign of [tex]\(\Delta H^\circ\)[/tex] changes.

Reversed reaction (c) becomes:
[tex]\[ 4 \text{CO}_2 (\text{g}) + 2 \text{H}_2 \text{O (l)} \rightarrow 2 \text{C}_2\text{H}_2 (\text{g}) + 5 \text{O}_2 (\text{g}), \][/tex]
and the enthalpy change for this reaction is:
[tex]\[ \Delta H^\circ = +2598.8 \, \text{kJ}. \][/tex]

2. We divide the entire reversed reaction (c) by 2 to match the stoichiometry of our target reaction:
[tex]\[ 2 \text{CO}_2 (\text{g}) + \text{H}_2\text{O (l)} \rightarrow \text{C}_2\text{H}_2 (\text{g}) + \frac{5}{2} \text{O}_2 (\text{g}), \][/tex]
and the enthalpy change for the divided reaction is:
[tex]\[ \Delta H^\circ = \frac{+2598.8 \, \text{kJ}}{2} = +1299.4 \, \text{kJ}. \][/tex]

3. Summing up the manipulated equations:
Our manipulated equation now directly matches the stoichiometry of our desired target reaction:
[tex]\[ 2 \text{C (graphite)} + \text{H}_2 (\text{g}) \rightarrow \text{C}_2\text{H}_2 (\text{g}), \][/tex]
with the enthalpy change:
[tex]\[ \Delta H^\circ = +1299.4 \, \text{kJ}. \][/tex]

Therefore, the enthalpy change ([tex]\(\Delta H\)[/tex]) for the reaction [tex]\(2 \text{C (graphite)} + \text{H}_2 (\text{g}) \rightarrow \text{C}_2\text{H}_2 (\text{g})\)[/tex] is:
[tex]\[ \Delta H^\circ = +1299.4 \, \text{kJ}. \][/tex]