IDNLearn.com provides a collaborative environment for finding and sharing answers. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
To express matrix [tex]\( A \)[/tex] as the sum of a symmetric matrix and a skew-symmetric matrix, we need to follow these steps:
1. Identify the given matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 2 & 4 & 8 \\ 6 & 7 & 2 \\ 4 & 6 & 9 \end{pmatrix} \][/tex]
2. Find the symmetric part of [tex]\( A \)[/tex]:
The symmetric part of a matrix [tex]\( A \)[/tex] can be given by [tex]\(\frac{A + A^T}{2}\)[/tex], where [tex]\( A^T \)[/tex] is the transpose of [tex]\( A \)[/tex].
[tex]\[ A^T = \begin{pmatrix} 2 & 6 & 4 \\ 4 & 7 & 6 \\ 8 & 2 & 9 \end{pmatrix} \][/tex]
Now, add [tex]\( A \)[/tex] and [tex]\( A^T \)[/tex]:
[tex]\[ A + A^T = \begin{pmatrix} 2 & 4 & 8 \\ 6 & 7 & 2 \\ 4 & 6 & 9 \end{pmatrix} + \begin{pmatrix} 2 & 6 & 4 \\ 4 & 7 & 6 \\ 8 & 2 & 9 \end{pmatrix} = \begin{pmatrix} 4 & 10 & 12 \\ 10 & 14 & 8 \\ 12 & 8 & 18 \end{pmatrix} \][/tex]
Then, divide by 2:
[tex]\[ A_{sym} = \frac{A + A^T}{2} = \frac{1}{2} \begin{pmatrix} 4 & 10 & 12 \\ 10 & 14 & 8 \\ 12 & 8 & 18 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 6 \\ 5 & 7 & 4 \\ 6 & 4 & 9 \end{pmatrix} \][/tex]
3. Find the skew-symmetric part of [tex]\( A \)[/tex]:
The skew-symmetric part of a matrix [tex]\( A \)[/tex] can be given by [tex]\(\frac{A - A^T}{2}\)[/tex].
[tex]\[ A - A^T = \begin{pmatrix} 2 & 4 & 8 \\ 6 & 7 & 2 \\ 4 & 6 & 9 \end{pmatrix} - \begin{pmatrix} 2 & 6 & 4 \\ 4 & 7 & 6 \\ 8 & 2 & 9 \end{pmatrix} = \begin{pmatrix} 0 & -2 & 4 \\ 2 & 0 & -4 \\ -4 & 4 & 0 \end{pmatrix} \][/tex]
Then, divide by 2:
[tex]\[ A_{skew} = \frac{A - A^T}{2} = \frac{1}{2} \begin{pmatrix} 0 & -2 & 4 \\ 2 & 0 & -4 \\ -4 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -2 \\ -2 & 2 & 0 \end{pmatrix} \][/tex]
4. Verify the decomposition:
To verify, we need to make sure [tex]\( A \)[/tex] equals the sum of the symmetric and skew-symmetric parts:
[tex]\[ A = A_{sym} + A_{skew} = \begin{pmatrix} 2 & 5 & 6 \\ 5 & 7 & 4 \\ 6 & 4 & 9 \end{pmatrix} + \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -2 \\ -2 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 8 \\ 6 & 7 & 2 \\ 4 & 6 & 9 \end{pmatrix} \][/tex]
Thus, matrix [tex]\( A \)[/tex] can be expressed as the sum of its symmetric part:
[tex]\[ A_{sym} = \begin{pmatrix} 2 & 5 & 6 \\ 5 & 7 & 4 \\ 6 & 4 & 9 \end{pmatrix} \][/tex]
and its skew-symmetric part:
[tex]\[ A_{skew} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -2 \\ -2 & 2 & 0 \end{pmatrix} \][/tex]
1. Identify the given matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 2 & 4 & 8 \\ 6 & 7 & 2 \\ 4 & 6 & 9 \end{pmatrix} \][/tex]
2. Find the symmetric part of [tex]\( A \)[/tex]:
The symmetric part of a matrix [tex]\( A \)[/tex] can be given by [tex]\(\frac{A + A^T}{2}\)[/tex], where [tex]\( A^T \)[/tex] is the transpose of [tex]\( A \)[/tex].
[tex]\[ A^T = \begin{pmatrix} 2 & 6 & 4 \\ 4 & 7 & 6 \\ 8 & 2 & 9 \end{pmatrix} \][/tex]
Now, add [tex]\( A \)[/tex] and [tex]\( A^T \)[/tex]:
[tex]\[ A + A^T = \begin{pmatrix} 2 & 4 & 8 \\ 6 & 7 & 2 \\ 4 & 6 & 9 \end{pmatrix} + \begin{pmatrix} 2 & 6 & 4 \\ 4 & 7 & 6 \\ 8 & 2 & 9 \end{pmatrix} = \begin{pmatrix} 4 & 10 & 12 \\ 10 & 14 & 8 \\ 12 & 8 & 18 \end{pmatrix} \][/tex]
Then, divide by 2:
[tex]\[ A_{sym} = \frac{A + A^T}{2} = \frac{1}{2} \begin{pmatrix} 4 & 10 & 12 \\ 10 & 14 & 8 \\ 12 & 8 & 18 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 6 \\ 5 & 7 & 4 \\ 6 & 4 & 9 \end{pmatrix} \][/tex]
3. Find the skew-symmetric part of [tex]\( A \)[/tex]:
The skew-symmetric part of a matrix [tex]\( A \)[/tex] can be given by [tex]\(\frac{A - A^T}{2}\)[/tex].
[tex]\[ A - A^T = \begin{pmatrix} 2 & 4 & 8 \\ 6 & 7 & 2 \\ 4 & 6 & 9 \end{pmatrix} - \begin{pmatrix} 2 & 6 & 4 \\ 4 & 7 & 6 \\ 8 & 2 & 9 \end{pmatrix} = \begin{pmatrix} 0 & -2 & 4 \\ 2 & 0 & -4 \\ -4 & 4 & 0 \end{pmatrix} \][/tex]
Then, divide by 2:
[tex]\[ A_{skew} = \frac{A - A^T}{2} = \frac{1}{2} \begin{pmatrix} 0 & -2 & 4 \\ 2 & 0 & -4 \\ -4 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -2 \\ -2 & 2 & 0 \end{pmatrix} \][/tex]
4. Verify the decomposition:
To verify, we need to make sure [tex]\( A \)[/tex] equals the sum of the symmetric and skew-symmetric parts:
[tex]\[ A = A_{sym} + A_{skew} = \begin{pmatrix} 2 & 5 & 6 \\ 5 & 7 & 4 \\ 6 & 4 & 9 \end{pmatrix} + \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -2 \\ -2 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 8 \\ 6 & 7 & 2 \\ 4 & 6 & 9 \end{pmatrix} \][/tex]
Thus, matrix [tex]\( A \)[/tex] can be expressed as the sum of its symmetric part:
[tex]\[ A_{sym} = \begin{pmatrix} 2 & 5 & 6 \\ 5 & 7 & 4 \\ 6 & 4 & 9 \end{pmatrix} \][/tex]
and its skew-symmetric part:
[tex]\[ A_{skew} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -2 \\ -2 & 2 & 0 \end{pmatrix} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.