IDNLearn.com provides a collaborative environment for finding and sharing answers. Our experts are ready to provide prompt and detailed answers to any questions you may have.

Find the four second partial derivatives of the following function:

[tex]\[
f(x, y) = \ln(9x^2 + y^2 + 9)
\][/tex]

[tex]\[
f_{xx} = \square
\][/tex]

[tex]\[
f_{yy} = \square
\][/tex]

[tex]\[
f_{xy} = \square
\][/tex]

[tex]\[
f_{yx} = \square
\][/tex]


Sagot :

To find the second partial derivatives of the function [tex]\( f(x, y) = \ln(9x^2 + y^2 + 9) \)[/tex], let's proceed step by step.

### First Partial Derivatives
1. First partial derivative with respect to [tex]\( x \)[/tex]:
[tex]\[ f_x = \frac{d}{dx} \left( \ln(9x^2 + y^2 + 9) \right) \][/tex]
Using the chain rule, we get:
[tex]\[ f_x = \frac{1}{9x^2 + y^2 + 9} \cdot \frac{d}{dx}(9x^2 + y^2 + 9) \][/tex]
[tex]\[ f_x = \frac{1}{9x^2 + y^2 + 9} \cdot 18x \][/tex]
[tex]\[ f_x = \frac{18x}{9x^2 + y^2 + 9} \][/tex]

2. First partial derivative with respect to [tex]\( y \)[/tex]:
[tex]\[ f_y = \frac{d}{dy} \left( \ln(9x^2 + y^2 + 9) \right) \][/tex]
Using the chain rule, we get:
[tex]\[ f_y = \frac{1}{9x^2 + y^2 + 9} \cdot \frac{d}{dy}(9x^2 + y^2 + 9) \][/tex]
[tex]\[ f_y = \frac{1}{9x^2 + y^2 + 9} \cdot 2y \][/tex]
[tex]\[ f_y = \frac{2y}{9x^2 + y^2 + 9} \][/tex]

### Second Partial Derivatives
1. Second partial derivative with respect to [tex]\( x \)[/tex]:
[tex]\[ f_{xx} = \frac{d}{dx} \left( \frac{18x}{9x^2 + y^2 + 9} \right) \][/tex]
We will use the quotient rule [tex]\(\left(\frac{a}{b}\right)' = \frac{a'b - ab'}{b^2}\)[/tex]:
[tex]\[ f_{xx} = \frac{(18)(9x^2 + y^2 + 9) - (18x)(18x)}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{xx} = \frac{18(9x^2 + y^2 + 9) - 324x^2}{(9x^2 + y^2 + 9)^2} \][/tex]
Simplifying the numerator:
[tex]\[ f_{xx} = \frac{162x^2 + 18y^2 + 162 - 324x^2}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{xx} = \frac{18y^2 - 162x^2 + 162}{(9x^2 + y^2 + 9)^2} \][/tex]
Factor out a common factor in the numerator:
[tex]\[ f_{xx} = \frac{18(-18x^2 + y^2 + 9)}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{xx} = \frac{18(-18x^2 + y^2 + 9)}{(9x^2 + y^2 + 9)^2} \][/tex]

2. Second partial derivative with respect to [tex]\( y \)[/tex]:
[tex]\[ f_{yy} = \frac{d}{dy} \left( \frac{2y}{9x^2 + y^2 + 9} \right) \][/tex]
Applying the quotient rule:
[tex]\[ f_{yy} = \frac{2(9x^2 + y^2 + 9) - (2y)(2y)}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{yy} = \frac{2(9x^2 + y^2 + 9) - 4y^2}{(9x^2 + y^2 + 9)^2} \][/tex]
Simplifying the numerator:
[tex]\[ f_{yy} = \frac{18x^2 + 2y^2 + 18 - 4y^2}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{yy} = \frac{18x^2 - 2y^2 + 18}{(9x^2 + y^2 + 9)^2} \][/tex]
Factor out a common factor in the numerator:
[tex]\[ f_{yy} = \frac{2(18x^2 - 2y^2 + 9)}{(9x^2 + y^2 + 9)^2} \][/tex]

3. Mixed second partial derivative [tex]\( f_{xy} \)[/tex]:
[tex]\[ f_{xy} = \frac{d}{dy} \left( \frac{18x}{9x^2 + y^2 + 9} \right) \][/tex]
Using the quotient rule:
[tex]\[ f_{xy} = \frac{18x \cdot \frac{d}{dy}(9x^2 + y^2 + 9) - \frac{d}{dy}(18x) \cdot (9x^2 + y^2 + 9)}{(9x^2 + y^2 + 9)^2} \][/tex]
Simplifying:
[tex]\[ f_{xy} = \frac{18x \cdot 2y - 18x \cdot (9x^2 + y^2 + 9)}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{xy} = \frac{36xy}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{xy} = \frac{-36xy}{(9x^2 + y^2 + 9)^2} \][/tex]

4. Mixed second partial derivative [tex]\( f_{yx} \)[/tex]:
By Clairaut's theorem (assuming the function is sufficiently smooth), the mixed partial derivatives are equal:
[tex]\[ f_{yx} = f_{xy} \][/tex]
Therefore:
[tex]\[ f_{yx} = \frac{-36xy}{(9x^2 + y^2 + 9)^2} \][/tex]

### Summary
The second partial derivatives are:

[tex]\[ f_{xx} = \frac{18(-18x^2 + y^2 + 9)}{(9x^2 + y^2 + 9)} \][/tex]

[tex]\[ f_{yy} = \frac{2(-2y^2 + 9x^2 + 9)}{(9x^2 + y^2 + 9)} \][/tex]

[tex]\[ f_{xy} = \frac{-36xy}{(9x^2 + y^2 + 9)^2} \][/tex]

[tex]\[ f_{yx} = \frac{-36xy}{(9x^2 + y^2 + 9)^2} \][/tex]
Your participation is crucial to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.