Connect with a global community of experts on IDNLearn.com. Get comprehensive answers to all your questions from our network of experienced experts.

Find the four second partial derivatives of the following function:

[tex]\[
f(x, y) = \ln(9x^2 + y^2 + 9)
\][/tex]

[tex]\[
f_{xx} = \square
\][/tex]

[tex]\[
f_{yy} = \square
\][/tex]

[tex]\[
f_{xy} = \square
\][/tex]

[tex]\[
f_{yx} = \square
\][/tex]


Sagot :

To find the second partial derivatives of the function [tex]\( f(x, y) = \ln(9x^2 + y^2 + 9) \)[/tex], let's proceed step by step.

### First Partial Derivatives
1. First partial derivative with respect to [tex]\( x \)[/tex]:
[tex]\[ f_x = \frac{d}{dx} \left( \ln(9x^2 + y^2 + 9) \right) \][/tex]
Using the chain rule, we get:
[tex]\[ f_x = \frac{1}{9x^2 + y^2 + 9} \cdot \frac{d}{dx}(9x^2 + y^2 + 9) \][/tex]
[tex]\[ f_x = \frac{1}{9x^2 + y^2 + 9} \cdot 18x \][/tex]
[tex]\[ f_x = \frac{18x}{9x^2 + y^2 + 9} \][/tex]

2. First partial derivative with respect to [tex]\( y \)[/tex]:
[tex]\[ f_y = \frac{d}{dy} \left( \ln(9x^2 + y^2 + 9) \right) \][/tex]
Using the chain rule, we get:
[tex]\[ f_y = \frac{1}{9x^2 + y^2 + 9} \cdot \frac{d}{dy}(9x^2 + y^2 + 9) \][/tex]
[tex]\[ f_y = \frac{1}{9x^2 + y^2 + 9} \cdot 2y \][/tex]
[tex]\[ f_y = \frac{2y}{9x^2 + y^2 + 9} \][/tex]

### Second Partial Derivatives
1. Second partial derivative with respect to [tex]\( x \)[/tex]:
[tex]\[ f_{xx} = \frac{d}{dx} \left( \frac{18x}{9x^2 + y^2 + 9} \right) \][/tex]
We will use the quotient rule [tex]\(\left(\frac{a}{b}\right)' = \frac{a'b - ab'}{b^2}\)[/tex]:
[tex]\[ f_{xx} = \frac{(18)(9x^2 + y^2 + 9) - (18x)(18x)}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{xx} = \frac{18(9x^2 + y^2 + 9) - 324x^2}{(9x^2 + y^2 + 9)^2} \][/tex]
Simplifying the numerator:
[tex]\[ f_{xx} = \frac{162x^2 + 18y^2 + 162 - 324x^2}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{xx} = \frac{18y^2 - 162x^2 + 162}{(9x^2 + y^2 + 9)^2} \][/tex]
Factor out a common factor in the numerator:
[tex]\[ f_{xx} = \frac{18(-18x^2 + y^2 + 9)}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{xx} = \frac{18(-18x^2 + y^2 + 9)}{(9x^2 + y^2 + 9)^2} \][/tex]

2. Second partial derivative with respect to [tex]\( y \)[/tex]:
[tex]\[ f_{yy} = \frac{d}{dy} \left( \frac{2y}{9x^2 + y^2 + 9} \right) \][/tex]
Applying the quotient rule:
[tex]\[ f_{yy} = \frac{2(9x^2 + y^2 + 9) - (2y)(2y)}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{yy} = \frac{2(9x^2 + y^2 + 9) - 4y^2}{(9x^2 + y^2 + 9)^2} \][/tex]
Simplifying the numerator:
[tex]\[ f_{yy} = \frac{18x^2 + 2y^2 + 18 - 4y^2}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{yy} = \frac{18x^2 - 2y^2 + 18}{(9x^2 + y^2 + 9)^2} \][/tex]
Factor out a common factor in the numerator:
[tex]\[ f_{yy} = \frac{2(18x^2 - 2y^2 + 9)}{(9x^2 + y^2 + 9)^2} \][/tex]

3. Mixed second partial derivative [tex]\( f_{xy} \)[/tex]:
[tex]\[ f_{xy} = \frac{d}{dy} \left( \frac{18x}{9x^2 + y^2 + 9} \right) \][/tex]
Using the quotient rule:
[tex]\[ f_{xy} = \frac{18x \cdot \frac{d}{dy}(9x^2 + y^2 + 9) - \frac{d}{dy}(18x) \cdot (9x^2 + y^2 + 9)}{(9x^2 + y^2 + 9)^2} \][/tex]
Simplifying:
[tex]\[ f_{xy} = \frac{18x \cdot 2y - 18x \cdot (9x^2 + y^2 + 9)}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{xy} = \frac{36xy}{(9x^2 + y^2 + 9)^2} \][/tex]
[tex]\[ f_{xy} = \frac{-36xy}{(9x^2 + y^2 + 9)^2} \][/tex]

4. Mixed second partial derivative [tex]\( f_{yx} \)[/tex]:
By Clairaut's theorem (assuming the function is sufficiently smooth), the mixed partial derivatives are equal:
[tex]\[ f_{yx} = f_{xy} \][/tex]
Therefore:
[tex]\[ f_{yx} = \frac{-36xy}{(9x^2 + y^2 + 9)^2} \][/tex]

### Summary
The second partial derivatives are:

[tex]\[ f_{xx} = \frac{18(-18x^2 + y^2 + 9)}{(9x^2 + y^2 + 9)} \][/tex]

[tex]\[ f_{yy} = \frac{2(-2y^2 + 9x^2 + 9)}{(9x^2 + y^2 + 9)} \][/tex]

[tex]\[ f_{xy} = \frac{-36xy}{(9x^2 + y^2 + 9)^2} \][/tex]

[tex]\[ f_{yx} = \frac{-36xy}{(9x^2 + y^2 + 9)^2} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.