Find the best solutions to your problems with the help of IDNLearn.com's expert users. Discover reliable answers to your questions with our extensive database of expert knowledge.

Two exponential functions are shown in the table.

\begin{tabular}{|c|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)=2^x$[/tex] & [tex]$g(x)=\left(\frac{1}{2}\right)^x$[/tex] \\
\hline
2 & 4 & [tex]$\frac{1}{4}$[/tex] \\
\hline
1 & 2 & [tex]$\frac{1}{2}$[/tex] \\
\hline
0 & 1 & 1 \\
\hline
-1 & [tex]$\frac{1}{2}$[/tex] & 2 \\
\hline
-2 & [tex]$\frac{1}{4}$[/tex] & 4 \\
\hline
\end{tabular}

Which conclusion about [tex]$f(x)$[/tex] and [tex]$g(x)$[/tex] can be drawn from the table?

A. The functions [tex]$f(x)$[/tex] and [tex]$g(x)$[/tex] are reflections over the [tex]$x$[/tex] axis.
B. The functions [tex]$f(x)$[/tex] and [tex]$g(x)$[/tex] are reflections over the [tex]$y$[/tex] axis.
C. The function [tex]$f(x)$[/tex] is a decreasing function, and [tex]$g(x)$[/tex] is an increasing function.
D. The function [tex]$f(x)$[/tex] has a greater initial value than [tex]$g(x)$[/tex].


Sagot :

To determine the relationship between the functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] given in the table, we should carefully analyze their values for different [tex]\( x \)[/tex] values. Here's the table for reference:

[tex]\[ \begin{tabular}{|c|c|c|} \hline $x$ & $f(x)=2^x$ & $g(x)=\left(\frac{1}{2}\right)^x$ \\ \hline 2 & 4 & \frac{1}{4} \\ \hline 1 & 2 & \frac{1}{2} \\ \hline 0 & 1 & 1 \\ \hline -1 & \frac{1}{2} & 2 \\ \hline -2 & \frac{1}{4} & 4 \\ \hline \end{tabular} \][/tex]

Let's compare the values of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] at each given [tex]\( x \)[/tex]:

1. When [tex]\( x = 2 \)[/tex]:
- [tex]\( f(2) = 2^2 = 4 \)[/tex]
- [tex]\( g(2) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \)[/tex]

2. When [tex]\( x = 1 \)[/tex]:
- [tex]\( f(1) = 2^1 = 2 \)[/tex]
- [tex]\( g(1) = \left(\frac{1}{2}\right)^1 = \frac{1}{2} \)[/tex]

3. When [tex]\( x = 0 \)[/tex]:
- [tex]\( f(0) = 2^0 = 1 \)[/tex]
- [tex]\( g(0) = \left(\frac{1}{2}\right)^0 = 1 \)[/tex]

4. When [tex]\( x = -1 \)[/tex]:
- [tex]\( f(-1) = 2^{-1} = \frac{1}{2} \)[/tex]
- [tex]\( g(-1) = \left(\frac{1}{2}\right)^{-1} = 2 \)[/tex]

5. When [tex]\( x = -2 \)[/tex]:
- [tex]\( f(-2) = 2^{-2} = \frac{1}{4} \)[/tex]
- [tex]\( g(-2) = \left(\frac{1}{2}\right)^{-2} = 4 \)[/tex]

By examining these values, we can notice the following pattern:

- For positive [tex]\( x \)[/tex], [tex]\( f(x) \)[/tex] yields values greater than 1, while [tex]\( g(x) \)[/tex] yields values less than 1.
- Both functions yield 1 when [tex]\( x = 0 \)[/tex].
- For negative [tex]\( x \)[/tex], [tex]\( f(x) \)[/tex] yields values less than 1, while [tex]\( g(x) \)[/tex] yields values greater than 1.
- Essentially, [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inversely related and symmetrical about the [tex]\( y \)[/tex]-axis.

Therefore, the relationship between the functions can be concluded as:

The functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are reflections over the [tex]\( y \)[/tex] axis.