IDNLearn.com is committed to providing high-quality answers to your questions. Ask any question and get a detailed, reliable answer from our community of experts.
Sagot :
Certainly! Let's work through the given function [tex]\( f(x) = \frac{1}{3} x^3 - 2 x^2 + 3 x + 7 \)[/tex] step by step.
### i) Find [tex]\( f'(x) \)[/tex]
To find [tex]\( f'(x) \)[/tex], we need to differentiate [tex]\( f(x) \)[/tex] with respect to [tex]\( x \)[/tex].
[tex]\[ f'(x) = \frac{d}{dx}\left(\frac{1}{3} x^3 - 2 x^2 + 3 x + 7\right) \][/tex]
Differentiating each term individually:
[tex]\[ \frac{d}{dx}\left(\frac{1}{3} x^3\right) = x^2 \][/tex]
[tex]\[ \frac{d}{dx}\left(-2 x^2\right) = -4 x \][/tex]
[tex]\[ \frac{d}{dx}\left(3 x\right) = 3 \][/tex]
[tex]\[ \frac{d}{dx}\left(7\right) = 0 \][/tex]
So, we get:
[tex]\[ f'(x) = x^2 - 4x + 3 \][/tex]
### ii) Find the coordinates of the turning points of [tex]\( f(x) \)[/tex]
Turning points occur where [tex]\( f'(x) = 0 \)[/tex]. We need to solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ x^2 - 4x + 3 = 0 \][/tex]
Factoring the quadratic:
[tex]\[ (x - 1)(x - 3) = 0 \][/tex]
Setting each factor to zero gives us the critical points:
[tex]\[ x = 1 \][/tex]
[tex]\[ x = 3 \][/tex]
To find the coordinates of these turning points, we substitute these [tex]\( x \)[/tex]-values back into the original function [tex]\( f(x) \)[/tex]:
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \frac{1}{3}(1)^3 - 2(1)^2 + 3(1) + 7 = \frac{1}{3} - 2 + 3 + 7 = 8.3333 \][/tex]
For [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = \frac{1}{3}(3)^3 - 2(3)^2 + 3(3) + 7 = 9 - 18 + 9 + 7 = 7 \][/tex]
Thus, the turning points are:
[tex]\[ (1, 8.3333) \][/tex]
[tex]\[ (3, 7) \][/tex]
### iii) State the nature of the turning points in (ii) above
To determine the nature of these turning points, we look at the second derivative [tex]\( f''(x) \)[/tex].
First, find [tex]\( f''(x) \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx}(x^2 - 4x + 3) = 2x - 4 \][/tex]
Now, evaluate [tex]\( f''(x) \)[/tex] at the critical points:
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f''(1) = 2(1) - 4 = -2 \][/tex]
Since [tex]\( f''(1) < 0 \)[/tex], the point [tex]\( (1, 8.3333) \)[/tex] is a local maximum.
For [tex]\( x = 3 \)[/tex]:
[tex]\[ f''(3) = 2(3) - 4 = 2 \][/tex]
Since [tex]\( f''(3) > 0 \)[/tex], the point [tex]\( (3, 7) \)[/tex] is a local minimum.
### iv) Find the values of [tex]\( x \)[/tex] for which [tex]\( f'(x) > 0 \)[/tex]
We need to solve the inequality:
[tex]\[ x^2 - 4x + 3 > 0 \][/tex]
This can be factored as:
[tex]\[ (x - 1)(x - 3) > 0 \][/tex]
The solution to this inequality:
[tex]\[ x < 1 \quad \text{or} \quad x > 3 \][/tex]
Expressing in interval notation:
[tex]\[ (-\infty, 1) \cup (3, \infty) \][/tex]
### v) Find the values of [tex]\( x \)[/tex] for which [tex]\( f'(x) < 0 \)[/tex]
We need to solve the inequality:
[tex]\[ x^2 - 4x + 3 < 0 \][/tex]
The solution to this inequality:
[tex]\[ 1 < x < 3 \][/tex]
Expressing in interval notation:
[tex]\[ (1, 3) \][/tex]
### Summary
- [tex]\( f'(x) = x^2 - 4x + 3 \)[/tex]
- Turning points are [tex]\( (1, 8.3333) \)[/tex] and [tex]\( (3, 7) \)[/tex]
- The point [tex]\( (1, 8.3333) \)[/tex] is a local maximum, and the point [tex]\( (3, 7) \)[/tex] is a local minimum
- [tex]\( f'(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 1) \cup (3, \infty) \)[/tex]
- [tex]\( f'(x) < 0 \)[/tex] for [tex]\( x \in (1, 3) \)[/tex]
### i) Find [tex]\( f'(x) \)[/tex]
To find [tex]\( f'(x) \)[/tex], we need to differentiate [tex]\( f(x) \)[/tex] with respect to [tex]\( x \)[/tex].
[tex]\[ f'(x) = \frac{d}{dx}\left(\frac{1}{3} x^3 - 2 x^2 + 3 x + 7\right) \][/tex]
Differentiating each term individually:
[tex]\[ \frac{d}{dx}\left(\frac{1}{3} x^3\right) = x^2 \][/tex]
[tex]\[ \frac{d}{dx}\left(-2 x^2\right) = -4 x \][/tex]
[tex]\[ \frac{d}{dx}\left(3 x\right) = 3 \][/tex]
[tex]\[ \frac{d}{dx}\left(7\right) = 0 \][/tex]
So, we get:
[tex]\[ f'(x) = x^2 - 4x + 3 \][/tex]
### ii) Find the coordinates of the turning points of [tex]\( f(x) \)[/tex]
Turning points occur where [tex]\( f'(x) = 0 \)[/tex]. We need to solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ x^2 - 4x + 3 = 0 \][/tex]
Factoring the quadratic:
[tex]\[ (x - 1)(x - 3) = 0 \][/tex]
Setting each factor to zero gives us the critical points:
[tex]\[ x = 1 \][/tex]
[tex]\[ x = 3 \][/tex]
To find the coordinates of these turning points, we substitute these [tex]\( x \)[/tex]-values back into the original function [tex]\( f(x) \)[/tex]:
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \frac{1}{3}(1)^3 - 2(1)^2 + 3(1) + 7 = \frac{1}{3} - 2 + 3 + 7 = 8.3333 \][/tex]
For [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = \frac{1}{3}(3)^3 - 2(3)^2 + 3(3) + 7 = 9 - 18 + 9 + 7 = 7 \][/tex]
Thus, the turning points are:
[tex]\[ (1, 8.3333) \][/tex]
[tex]\[ (3, 7) \][/tex]
### iii) State the nature of the turning points in (ii) above
To determine the nature of these turning points, we look at the second derivative [tex]\( f''(x) \)[/tex].
First, find [tex]\( f''(x) \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx}(x^2 - 4x + 3) = 2x - 4 \][/tex]
Now, evaluate [tex]\( f''(x) \)[/tex] at the critical points:
For [tex]\( x = 1 \)[/tex]:
[tex]\[ f''(1) = 2(1) - 4 = -2 \][/tex]
Since [tex]\( f''(1) < 0 \)[/tex], the point [tex]\( (1, 8.3333) \)[/tex] is a local maximum.
For [tex]\( x = 3 \)[/tex]:
[tex]\[ f''(3) = 2(3) - 4 = 2 \][/tex]
Since [tex]\( f''(3) > 0 \)[/tex], the point [tex]\( (3, 7) \)[/tex] is a local minimum.
### iv) Find the values of [tex]\( x \)[/tex] for which [tex]\( f'(x) > 0 \)[/tex]
We need to solve the inequality:
[tex]\[ x^2 - 4x + 3 > 0 \][/tex]
This can be factored as:
[tex]\[ (x - 1)(x - 3) > 0 \][/tex]
The solution to this inequality:
[tex]\[ x < 1 \quad \text{or} \quad x > 3 \][/tex]
Expressing in interval notation:
[tex]\[ (-\infty, 1) \cup (3, \infty) \][/tex]
### v) Find the values of [tex]\( x \)[/tex] for which [tex]\( f'(x) < 0 \)[/tex]
We need to solve the inequality:
[tex]\[ x^2 - 4x + 3 < 0 \][/tex]
The solution to this inequality:
[tex]\[ 1 < x < 3 \][/tex]
Expressing in interval notation:
[tex]\[ (1, 3) \][/tex]
### Summary
- [tex]\( f'(x) = x^2 - 4x + 3 \)[/tex]
- Turning points are [tex]\( (1, 8.3333) \)[/tex] and [tex]\( (3, 7) \)[/tex]
- The point [tex]\( (1, 8.3333) \)[/tex] is a local maximum, and the point [tex]\( (3, 7) \)[/tex] is a local minimum
- [tex]\( f'(x) > 0 \)[/tex] for [tex]\( x \in (-\infty, 1) \cup (3, \infty) \)[/tex]
- [tex]\( f'(x) < 0 \)[/tex] for [tex]\( x \in (1, 3) \)[/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.