Find expert answers and community-driven knowledge on IDNLearn.com. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
To determine the value of [tex]\( x \)[/tex] that makes the matrix [tex]\( X \)[/tex] singular, we need to find the value of [tex]\( x \)[/tex] for which the determinant of the matrix [tex]\( X \)[/tex] equals zero. The matrix in question is:
[tex]\[ X = \begin{pmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{pmatrix} \][/tex]
Let's compute the determinant of [tex]\( X \)[/tex]:
[tex]\[ \text{det}(X) = \begin{vmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{vmatrix} \][/tex]
By expanding along the first row:
[tex]\[ \text{det}(X) = 2 \cdot \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} - 0 \cdot \begin{vmatrix} x & 4 \\ 1 & x \end{vmatrix} + 1 \cdot \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} \][/tex]
We know that if the matrix is singular, its determinant is zero. Let's expand and simplify these 2x2 determinants:
1. First determinant:
[tex]\[ \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} = 2 \cdot x - 4 \cdot 2 = 2x - 8 \][/tex]
2. Second determinant (which includes the coeffiecient 0 and will disappear):
[tex]\[ \text{Not needed as coefficient is 0} \][/tex]
3. Third determinant:
[tex]\[ \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} = x \cdot 2 - 2 \cdot 1 = 2x - 2 \][/tex]
So, putting this all together:
[tex]\[ \text{det}(X) = 2 \cdot (2x - 8) + 1 \cdot (2x - 2) \][/tex]
Simplify this expression to:
[tex]\[ \text{det}(X) = 4x - 16 + 2x - 2 = 6x - 18 \][/tex]
For the matrix to be singular, we set the determinant equal to zero:
[tex]\[ 6x - 18 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 6x - 18 = 0 \implies 6x = 18 \implies x = 3 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that makes the matrix [tex]\( X \)[/tex] singular is:
[tex]\( \boxed{3} \)[/tex]
[tex]\[ X = \begin{pmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{pmatrix} \][/tex]
Let's compute the determinant of [tex]\( X \)[/tex]:
[tex]\[ \text{det}(X) = \begin{vmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{vmatrix} \][/tex]
By expanding along the first row:
[tex]\[ \text{det}(X) = 2 \cdot \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} - 0 \cdot \begin{vmatrix} x & 4 \\ 1 & x \end{vmatrix} + 1 \cdot \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} \][/tex]
We know that if the matrix is singular, its determinant is zero. Let's expand and simplify these 2x2 determinants:
1. First determinant:
[tex]\[ \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} = 2 \cdot x - 4 \cdot 2 = 2x - 8 \][/tex]
2. Second determinant (which includes the coeffiecient 0 and will disappear):
[tex]\[ \text{Not needed as coefficient is 0} \][/tex]
3. Third determinant:
[tex]\[ \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} = x \cdot 2 - 2 \cdot 1 = 2x - 2 \][/tex]
So, putting this all together:
[tex]\[ \text{det}(X) = 2 \cdot (2x - 8) + 1 \cdot (2x - 2) \][/tex]
Simplify this expression to:
[tex]\[ \text{det}(X) = 4x - 16 + 2x - 2 = 6x - 18 \][/tex]
For the matrix to be singular, we set the determinant equal to zero:
[tex]\[ 6x - 18 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 6x - 18 = 0 \implies 6x = 18 \implies x = 3 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that makes the matrix [tex]\( X \)[/tex] singular is:
[tex]\( \boxed{3} \)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.