Find solutions to your problems with the expert advice available on IDNLearn.com. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.
Sagot :
To determine the value of [tex]\( x \)[/tex] that makes the matrix [tex]\( X \)[/tex] singular, we need to find the value of [tex]\( x \)[/tex] for which the determinant of the matrix [tex]\( X \)[/tex] equals zero. The matrix in question is:
[tex]\[ X = \begin{pmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{pmatrix} \][/tex]
Let's compute the determinant of [tex]\( X \)[/tex]:
[tex]\[ \text{det}(X) = \begin{vmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{vmatrix} \][/tex]
By expanding along the first row:
[tex]\[ \text{det}(X) = 2 \cdot \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} - 0 \cdot \begin{vmatrix} x & 4 \\ 1 & x \end{vmatrix} + 1 \cdot \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} \][/tex]
We know that if the matrix is singular, its determinant is zero. Let's expand and simplify these 2x2 determinants:
1. First determinant:
[tex]\[ \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} = 2 \cdot x - 4 \cdot 2 = 2x - 8 \][/tex]
2. Second determinant (which includes the coeffiecient 0 and will disappear):
[tex]\[ \text{Not needed as coefficient is 0} \][/tex]
3. Third determinant:
[tex]\[ \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} = x \cdot 2 - 2 \cdot 1 = 2x - 2 \][/tex]
So, putting this all together:
[tex]\[ \text{det}(X) = 2 \cdot (2x - 8) + 1 \cdot (2x - 2) \][/tex]
Simplify this expression to:
[tex]\[ \text{det}(X) = 4x - 16 + 2x - 2 = 6x - 18 \][/tex]
For the matrix to be singular, we set the determinant equal to zero:
[tex]\[ 6x - 18 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 6x - 18 = 0 \implies 6x = 18 \implies x = 3 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that makes the matrix [tex]\( X \)[/tex] singular is:
[tex]\( \boxed{3} \)[/tex]
[tex]\[ X = \begin{pmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{pmatrix} \][/tex]
Let's compute the determinant of [tex]\( X \)[/tex]:
[tex]\[ \text{det}(X) = \begin{vmatrix} 2 & 0 & 1 \\ x & 2 & 4 \\ 1 & 2 & x \end{vmatrix} \][/tex]
By expanding along the first row:
[tex]\[ \text{det}(X) = 2 \cdot \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} - 0 \cdot \begin{vmatrix} x & 4 \\ 1 & x \end{vmatrix} + 1 \cdot \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} \][/tex]
We know that if the matrix is singular, its determinant is zero. Let's expand and simplify these 2x2 determinants:
1. First determinant:
[tex]\[ \begin{vmatrix} 2 & 4 \\ 2 & x \end{vmatrix} = 2 \cdot x - 4 \cdot 2 = 2x - 8 \][/tex]
2. Second determinant (which includes the coeffiecient 0 and will disappear):
[tex]\[ \text{Not needed as coefficient is 0} \][/tex]
3. Third determinant:
[tex]\[ \begin{vmatrix} x & 2 \\ 1 & 2 \end{vmatrix} = x \cdot 2 - 2 \cdot 1 = 2x - 2 \][/tex]
So, putting this all together:
[tex]\[ \text{det}(X) = 2 \cdot (2x - 8) + 1 \cdot (2x - 2) \][/tex]
Simplify this expression to:
[tex]\[ \text{det}(X) = 4x - 16 + 2x - 2 = 6x - 18 \][/tex]
For the matrix to be singular, we set the determinant equal to zero:
[tex]\[ 6x - 18 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 6x - 18 = 0 \implies 6x = 18 \implies x = 3 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that makes the matrix [tex]\( X \)[/tex] singular is:
[tex]\( \boxed{3} \)[/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.