Discover new knowledge and insights with IDNLearn.com's extensive Q&A database. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.
Sagot :
Let's solve the equation [tex]\(\frac{3 \cos ^2 2x}{1 + \sin 2x} = 1\)[/tex] within the interval [tex]\(0^{\circ} \leqslant x \leqslant 90^{\circ}\)[/tex].
1. Rewrite the Equation:
We start with the given equation:
[tex]\[ \frac{3 \cos^2 2x}{1 + \sin 2x} = 1 \][/tex]
2. Isolate the Trigonometric Terms:
Multiply both sides by [tex]\((1 + \sin 2x)\)[/tex] to rid of the denominator:
[tex]\[ 3 \cos^2 2x = 1 + \sin 2x \][/tex]
3. Rearrange the Equation:
Move all terms to one side to facilitate solving:
[tex]\[ 3 \cos^2 2x - \sin 2x - 1 = 0 \][/tex]
4. Solve for [tex]\(2x\)[/tex]:
Let [tex]\(u = 2x\)[/tex]. The equation becomes easier to handle:
[tex]\[ 3 \cos^2 u - \sin u - 1 = 0 \][/tex]
5. Use Trigonometric Identities:
Recall the identity [tex]\(\cos^2 u = 1 - \sin^2 u\)[/tex]. Substitute it into the equation:
[tex]\[ 3 (1 - \sin^2 u) - \sin u - 1 = 0 \][/tex]
Expanding and simplifying, we get:
[tex]\[ 3 - 3 \sin^2 u - \sin u - 1 = 0 \][/tex]
[tex]\[ -3 \sin^2 u - \sin u + 2 = 0 \][/tex]
Multiply the entire equation by -1 to simplify:
[tex]\[ 3 \sin^2 u + \sin u - 2 = 0 \][/tex]
6. Solve the Quadratic Equation:
This is a quadratic equation in terms of [tex]\(\sin u\)[/tex]. Use the quadratic formula [tex]\(a \sin^2 u + b \sin u + c = 0\)[/tex] where [tex]\(a = 3\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -2\)[/tex]:
[tex]\[ \sin u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \sin u = \frac{-1 \pm \sqrt{1 + 24}}{6} \][/tex]
[tex]\[ \sin u = \frac{-1 \pm 5}{6} \][/tex]
This gives two solutions:
[tex]\[ \sin u = \frac{4}{6} = \frac{2}{3} \quad \text{and} \quad \sin u = \frac{-6}{6} = -1 \][/tex]
7. Convert Back to [tex]\(x\)[/tex]:
Recall that [tex]\(u = 2x\)[/tex]. Thus,
[tex]\[ \sin 2x = \frac{2}{3} \][/tex]
Check if [tex]\(\sin 2x = -1\)[/tex]:
[tex]\[ 2x = \sin^{-1}(-1) \][/tex]
This solution, however, falls outside the given range [tex]\(0^\circ \leq x \leq 90^\circ\)[/tex].
8. Find [tex]\(x\)[/tex]:
Solve for [tex]\(x\)[/tex] in the valid range:
[tex]\[ 2x = \sin^{-1} \left(\frac{2}{3}\right) \][/tex]
Divide by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{\sin^{-1} \left(\frac{2}{3}\right)}{2} \][/tex]
[tex]\[ x \approx 0.364863828113483 \quad \text{radians} \][/tex]
9. Convert to Degrees:
Since [tex]\(x\)[/tex] must be within [tex]\(0^\circ \leq x \leq 90^\circ\)[/tex], we also find another solution within this interval depending on the periodicity and symmetry of the sine function. The numerical results in radians approximate to:
[tex]\[ x_1 = 0.364863828113483 \, \text{radians} \approx 20.9^\circ \][/tex]
[tex]\[ x_2 = 1.20593249868141 \, \text{radians} \approx 69.1^\circ \][/tex]
Thus, the solutions to the equation [tex]\(\frac{3 \cos ^2 2x}{1+\sin 2x}=1\)[/tex] within the range [tex]\(0^{\circ} \leqslant x \leqslant 90^{\circ}\)[/tex] are [tex]\( x \approx 20.9^\circ \)[/tex] and [tex]\( x \approx 69.1^\circ \)[/tex].
1. Rewrite the Equation:
We start with the given equation:
[tex]\[ \frac{3 \cos^2 2x}{1 + \sin 2x} = 1 \][/tex]
2. Isolate the Trigonometric Terms:
Multiply both sides by [tex]\((1 + \sin 2x)\)[/tex] to rid of the denominator:
[tex]\[ 3 \cos^2 2x = 1 + \sin 2x \][/tex]
3. Rearrange the Equation:
Move all terms to one side to facilitate solving:
[tex]\[ 3 \cos^2 2x - \sin 2x - 1 = 0 \][/tex]
4. Solve for [tex]\(2x\)[/tex]:
Let [tex]\(u = 2x\)[/tex]. The equation becomes easier to handle:
[tex]\[ 3 \cos^2 u - \sin u - 1 = 0 \][/tex]
5. Use Trigonometric Identities:
Recall the identity [tex]\(\cos^2 u = 1 - \sin^2 u\)[/tex]. Substitute it into the equation:
[tex]\[ 3 (1 - \sin^2 u) - \sin u - 1 = 0 \][/tex]
Expanding and simplifying, we get:
[tex]\[ 3 - 3 \sin^2 u - \sin u - 1 = 0 \][/tex]
[tex]\[ -3 \sin^2 u - \sin u + 2 = 0 \][/tex]
Multiply the entire equation by -1 to simplify:
[tex]\[ 3 \sin^2 u + \sin u - 2 = 0 \][/tex]
6. Solve the Quadratic Equation:
This is a quadratic equation in terms of [tex]\(\sin u\)[/tex]. Use the quadratic formula [tex]\(a \sin^2 u + b \sin u + c = 0\)[/tex] where [tex]\(a = 3\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -2\)[/tex]:
[tex]\[ \sin u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \sin u = \frac{-1 \pm \sqrt{1 + 24}}{6} \][/tex]
[tex]\[ \sin u = \frac{-1 \pm 5}{6} \][/tex]
This gives two solutions:
[tex]\[ \sin u = \frac{4}{6} = \frac{2}{3} \quad \text{and} \quad \sin u = \frac{-6}{6} = -1 \][/tex]
7. Convert Back to [tex]\(x\)[/tex]:
Recall that [tex]\(u = 2x\)[/tex]. Thus,
[tex]\[ \sin 2x = \frac{2}{3} \][/tex]
Check if [tex]\(\sin 2x = -1\)[/tex]:
[tex]\[ 2x = \sin^{-1}(-1) \][/tex]
This solution, however, falls outside the given range [tex]\(0^\circ \leq x \leq 90^\circ\)[/tex].
8. Find [tex]\(x\)[/tex]:
Solve for [tex]\(x\)[/tex] in the valid range:
[tex]\[ 2x = \sin^{-1} \left(\frac{2}{3}\right) \][/tex]
Divide by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{\sin^{-1} \left(\frac{2}{3}\right)}{2} \][/tex]
[tex]\[ x \approx 0.364863828113483 \quad \text{radians} \][/tex]
9. Convert to Degrees:
Since [tex]\(x\)[/tex] must be within [tex]\(0^\circ \leq x \leq 90^\circ\)[/tex], we also find another solution within this interval depending on the periodicity and symmetry of the sine function. The numerical results in radians approximate to:
[tex]\[ x_1 = 0.364863828113483 \, \text{radians} \approx 20.9^\circ \][/tex]
[tex]\[ x_2 = 1.20593249868141 \, \text{radians} \approx 69.1^\circ \][/tex]
Thus, the solutions to the equation [tex]\(\frac{3 \cos ^2 2x}{1+\sin 2x}=1\)[/tex] within the range [tex]\(0^{\circ} \leqslant x \leqslant 90^{\circ}\)[/tex] are [tex]\( x \approx 20.9^\circ \)[/tex] and [tex]\( x \approx 69.1^\circ \)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.