IDNLearn.com is designed to help you find reliable answers quickly and easily. Discover comprehensive answers to your questions from our community of experienced professionals.

Sulfur reacts with oxygen to form sulfur dioxide [tex]$SO_2(g)$[/tex], with [tex]\Delta H_f = -296.8 \, \text{kJ/mol}[/tex] according to the equation:

[tex] S(s) + O_2(g) \rightarrow SO_2(g) [/tex]

What is the enthalpy change for the reaction?

Use the equation:

[tex] \Delta H_{r \times n} = \sum (\Delta H_{\text{f, products}}) - \sum (\Delta H_{\text{f, reactants}}) [/tex]

A. [tex] -593.6 \, \text{kJ} [/tex]
B. [tex] -296.8 \, \text{kJ} [/tex]
C. [tex] 296.8 \, \text{kJ} [/tex]
D. [tex] 593.6 \, \text{kJ} [/tex]


Sagot :

To determine the enthalpy change for the reaction, we will use the given equation and the provided values.

[tex]\[ S(s) + O_2(g) \rightarrow SO_2(g) \][/tex]

We know the formula to calculate the enthalpy change for the reaction:

[tex]\[ \Delta H_{rxn} = \sum\left(\Delta H_{f, \text{products}}\right) - \sum\left(\Delta H_{f, \text{reactants}}\right) \][/tex]

Step-by-Step Breakdown:

1. Identify the ΔH_f values:
- For the product [tex]\(SO_2(g)\)[/tex], the enthalpy of formation [tex]\(\Delta H_f = -296.8 \text{ kJ/mol}\)[/tex] as given.
- For the reactants, sulfur (S(s)) and oxygen (O_2(g)) are in their standard states. The enthalpies of formation for elements in their standard states are zero:
[tex]\[ \Delta H_f(S(s)) = 0 \text{ kJ/mol} \][/tex]
[tex]\[ \Delta H_f(O_2(g)) = 0 \text{ kJ/mol} \][/tex]

2. Calculate the sum of the enthalpies of formation for the products:
[tex]\[ \sum\left(\Delta H_{f, \text{products}}\right) = \Delta H_f(SO_2(g)) = -296.8 \text{ kJ/mol} \][/tex]

3. Calculate the sum of the enthalpies of formation for the reactants:
[tex]\[ \sum\left(\Delta H_{f, \text{reactants}}\right) = \Delta H_f(S(s)) + \Delta H_f(O_2(g)) = 0 + 0 = 0 \text{ kJ/mol} \][/tex]

4. Plug these values into the enthalpy change formula:
[tex]\[ \Delta H_{rxn} = \sum\left(\Delta H_{f, \text{products}}\right) - \sum\left(\Delta H_{f, \text{reactants}}\right) \][/tex]
[tex]\[ \Delta H_{rxn} = -296.8 \text{ kJ/mol} - 0 \text{ kJ/mol} \][/tex]
[tex]\[ \Delta H_{rxn} = -296.8 \text{ kJ/mol} \][/tex]

Hence, the enthalpy change for the reaction is [tex]\(-296.8 \text{ kJ/mol}\)[/tex].

So, the correct answer is:

[tex]\[ \boxed{-296.8 \text{ kJ}} \][/tex]