Find solutions to your problems with the expert advice available on IDNLearn.com. Get step-by-step guidance for all your technical questions from our dedicated community members.

a. Find a power function that models the data.
b. Find a linear function that models the data.
c. Visually determine which function is the better fit for the data.

\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 1 & 5 \\
\hline 2 & 8 \\
\hline 3 & 13 \\
\hline 4 & 21 \\
\hline 5 & 32 \\
\hline 6 & 45 \\
\hline
\end{tabular}

a. The power function is [tex]$y=$[/tex] [tex]$\square$[/tex] [tex]$\square$[/tex]

(Use integers or decimals for any numbers in the expression. Round to the nearest thousandth as needed.)

b. The linear function is [tex]$y=$[/tex] [tex]$\square$[/tex] [tex]$x +($[/tex] [tex]$\square$[/tex] )

(Use integers or decimals for any numbers in the expression. Round to the nearest thousandth as needed.)


Sagot :

Let's go through each part of the solution step-by-step.

### Part (a): Finding a Power Function that Models the Data

Given the data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 5 \\ \hline 2 & 8 \\ \hline 3 & 13 \\ \hline 4 & 21 \\ \hline 5 & 32 \\ \hline 6 & 45 \\ \hline \end{array} \][/tex]
We are looking for a power function of the form [tex]\( y = a \cdot x^b \)[/tex].

The parameters for the power function are found to be [tex]\( a \approx 2.116 \)[/tex] and [tex]\( b \approx 1.696 \)[/tex].

So, the power function that models the data is:

[tex]\( y = 2.116 \cdot x^{1.696} \)[/tex].

### Part (b): Finding a Linear Function that Models the Data

We need a linear function of the form [tex]\( y = mx + c \)[/tex].

The parameters for the linear function are found to be [tex]\( m \approx 8.000 \)[/tex] and [tex]\( c \approx -7.333 \)[/tex].

Thus, the linear function that models the data is:

[tex]\( y = 8.000 \cdot x - 7.333 \)[/tex].

### Part (c): Determining Which Function is the Better Fit

To determine which function better fits the data, we'll compare them visually or using an error metric like Residual Sum of Squares (RSS). The function with the lower RSS is typically considered a better fit.

After comparing the two functions:

- The power function parameters are:
[tex]\( a \approx 2.116 \)[/tex] and [tex]\( b \approx 1.696 \)[/tex], leading to the function [tex]\( y = 2.116 \cdot x^{1.696} \)[/tex].

- The linear function parameters are:
[tex]\( m \approx 8.000 \)[/tex] and [tex]\( c \approx -7.333 \)[/tex], leading to the function [tex]\( y = 8.000 \cdot x - 7.333 \)[/tex].

Visually inspecting the data and the resulting functions (or using an error metric), we conclude that the power function provides the better fit for this specific data set compared to the linear function.

Therefore, summary of our results is:

a. The power function is:
[tex]\[ y = 2.116 \cdot x^{1.696} \][/tex]

b. The linear function is:
[tex]\[ y = 8.000 \cdot x - 7.333 \][/tex]

c. The power function is determined to be the better fit for the data.