IDNLearn.com makes it easy to find accurate answers to your specific questions. Join our Q&A platform to receive prompt and accurate responses from knowledgeable professionals in various fields.
Sagot :
To find the inverse of the function [tex]\( f(x) = x^2 + 2x \)[/tex] where [tex]\( x \geq -1 \)[/tex], follow these steps:
1. Express the function [tex]\( f(x) \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y = x^2 + 2x \][/tex]
2. Rewrite the equation to solve for [tex]\( x \)[/tex]:
- Move all terms to one side to set up a quadratic equation:
[tex]\[ x^2 + 2x - y = 0 \][/tex]
- This is now in the standard form of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex].
3. Use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] to solve for [tex]\( x \)[/tex]:
- Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -y \)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-y)}}{2 \cdot 1} \][/tex]
- Simplify inside the square root:
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 4y}}{2} \][/tex]
- Factor out the common term in the square root:
[tex]\[ x = \frac{-2 \pm \sqrt{4(1 + y)}}{2} \][/tex]
- Simplify further:
[tex]\[ x = \frac{-2 \pm 2\sqrt{1 + y}}{2} \][/tex]
- Divide each term inside the fraction by 2:
[tex]\[ x = -1 \pm \sqrt{1 + y} \][/tex]
4. Determine the appropriate branch of the solution:
- Since [tex]\( x \geq -1 \)[/tex], select the branch that satisfies this condition. The solution [tex]\( x = -1 - \sqrt{1 + y} \)[/tex] would always be less than or equal to -1, which does not fit our domain restriction [tex]\( x \geq -1 \)[/tex].
- Therefore, the appropriate solution is:
[tex]\[ x = -1 + \sqrt{1 + y} \][/tex]
5. Express the inverse function:
- Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to write the inverse function:
[tex]\[ x = -1 + \sqrt{1 + y} \implies y = -1 + \sqrt{1 + x} \][/tex]
Hence, the formula for the inverse of the function [tex]\( f(x) = x^2 + 2x \)[/tex] where [tex]\( x \geq -1 \)[/tex] is:
[tex]\[ f^{-1}(y) = -1 + \sqrt{1 + y} \][/tex]
This provides us with the required inverse function.
1. Express the function [tex]\( f(x) \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y = x^2 + 2x \][/tex]
2. Rewrite the equation to solve for [tex]\( x \)[/tex]:
- Move all terms to one side to set up a quadratic equation:
[tex]\[ x^2 + 2x - y = 0 \][/tex]
- This is now in the standard form of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex].
3. Use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] to solve for [tex]\( x \)[/tex]:
- Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -y \)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-y)}}{2 \cdot 1} \][/tex]
- Simplify inside the square root:
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 4y}}{2} \][/tex]
- Factor out the common term in the square root:
[tex]\[ x = \frac{-2 \pm \sqrt{4(1 + y)}}{2} \][/tex]
- Simplify further:
[tex]\[ x = \frac{-2 \pm 2\sqrt{1 + y}}{2} \][/tex]
- Divide each term inside the fraction by 2:
[tex]\[ x = -1 \pm \sqrt{1 + y} \][/tex]
4. Determine the appropriate branch of the solution:
- Since [tex]\( x \geq -1 \)[/tex], select the branch that satisfies this condition. The solution [tex]\( x = -1 - \sqrt{1 + y} \)[/tex] would always be less than or equal to -1, which does not fit our domain restriction [tex]\( x \geq -1 \)[/tex].
- Therefore, the appropriate solution is:
[tex]\[ x = -1 + \sqrt{1 + y} \][/tex]
5. Express the inverse function:
- Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to write the inverse function:
[tex]\[ x = -1 + \sqrt{1 + y} \implies y = -1 + \sqrt{1 + x} \][/tex]
Hence, the formula for the inverse of the function [tex]\( f(x) = x^2 + 2x \)[/tex] where [tex]\( x \geq -1 \)[/tex] is:
[tex]\[ f^{-1}(y) = -1 + \sqrt{1 + y} \][/tex]
This provides us with the required inverse function.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.