Join the growing community of curious minds on IDNLearn.com and get the answers you need. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
To find the inverse of the function [tex]\( f(x) = x^2 + 2x \)[/tex] where [tex]\( x \geq -1 \)[/tex], follow these steps:
1. Express the function [tex]\( f(x) \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y = x^2 + 2x \][/tex]
2. Rewrite the equation to solve for [tex]\( x \)[/tex]:
- Move all terms to one side to set up a quadratic equation:
[tex]\[ x^2 + 2x - y = 0 \][/tex]
- This is now in the standard form of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex].
3. Use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] to solve for [tex]\( x \)[/tex]:
- Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -y \)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-y)}}{2 \cdot 1} \][/tex]
- Simplify inside the square root:
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 4y}}{2} \][/tex]
- Factor out the common term in the square root:
[tex]\[ x = \frac{-2 \pm \sqrt{4(1 + y)}}{2} \][/tex]
- Simplify further:
[tex]\[ x = \frac{-2 \pm 2\sqrt{1 + y}}{2} \][/tex]
- Divide each term inside the fraction by 2:
[tex]\[ x = -1 \pm \sqrt{1 + y} \][/tex]
4. Determine the appropriate branch of the solution:
- Since [tex]\( x \geq -1 \)[/tex], select the branch that satisfies this condition. The solution [tex]\( x = -1 - \sqrt{1 + y} \)[/tex] would always be less than or equal to -1, which does not fit our domain restriction [tex]\( x \geq -1 \)[/tex].
- Therefore, the appropriate solution is:
[tex]\[ x = -1 + \sqrt{1 + y} \][/tex]
5. Express the inverse function:
- Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to write the inverse function:
[tex]\[ x = -1 + \sqrt{1 + y} \implies y = -1 + \sqrt{1 + x} \][/tex]
Hence, the formula for the inverse of the function [tex]\( f(x) = x^2 + 2x \)[/tex] where [tex]\( x \geq -1 \)[/tex] is:
[tex]\[ f^{-1}(y) = -1 + \sqrt{1 + y} \][/tex]
This provides us with the required inverse function.
1. Express the function [tex]\( f(x) \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y = x^2 + 2x \][/tex]
2. Rewrite the equation to solve for [tex]\( x \)[/tex]:
- Move all terms to one side to set up a quadratic equation:
[tex]\[ x^2 + 2x - y = 0 \][/tex]
- This is now in the standard form of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex].
3. Use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] to solve for [tex]\( x \)[/tex]:
- Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -y \)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-y)}}{2 \cdot 1} \][/tex]
- Simplify inside the square root:
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 4y}}{2} \][/tex]
- Factor out the common term in the square root:
[tex]\[ x = \frac{-2 \pm \sqrt{4(1 + y)}}{2} \][/tex]
- Simplify further:
[tex]\[ x = \frac{-2 \pm 2\sqrt{1 + y}}{2} \][/tex]
- Divide each term inside the fraction by 2:
[tex]\[ x = -1 \pm \sqrt{1 + y} \][/tex]
4. Determine the appropriate branch of the solution:
- Since [tex]\( x \geq -1 \)[/tex], select the branch that satisfies this condition. The solution [tex]\( x = -1 - \sqrt{1 + y} \)[/tex] would always be less than or equal to -1, which does not fit our domain restriction [tex]\( x \geq -1 \)[/tex].
- Therefore, the appropriate solution is:
[tex]\[ x = -1 + \sqrt{1 + y} \][/tex]
5. Express the inverse function:
- Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to write the inverse function:
[tex]\[ x = -1 + \sqrt{1 + y} \implies y = -1 + \sqrt{1 + x} \][/tex]
Hence, the formula for the inverse of the function [tex]\( f(x) = x^2 + 2x \)[/tex] where [tex]\( x \geq -1 \)[/tex] is:
[tex]\[ f^{-1}(y) = -1 + \sqrt{1 + y} \][/tex]
This provides us with the required inverse function.
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.