Find solutions to your problems with the expert advice available on IDNLearn.com. Explore thousands of verified answers from experts and find the solutions you need, no matter the topic.
Sagot :
To find the common solution points for the functions [tex]\( f(x) = x - 1 \)[/tex] and [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex], we need to determine where these two functions intersect.
First, let's break down the problem:
### Step 1: Define the Functions
- [tex]\( f(x) = x - 1 \)[/tex]
- [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]
### Step 2: Identify Potential Points
We have been provided with several potential points of intersection:
1. [tex]\((2, 1)\)[/tex]
2. [tex]\((1, 0)\)[/tex]
3. [tex]\((2, 3)\)[/tex]
4. [tex]\((5, 1)\)[/tex]
5. [tex]\((1, 2)\)[/tex]
6. [tex]\((0, 1)\)[/tex]
### Step 3: Verify Each Point
To determine if a given point [tex]\((x, y)\)[/tex] is a solution where the graphs of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] intersect, the y-value must be the same for both functions at that x-value. Let's check each point:
1. Point [tex]\((2, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(2) = 2 - 1 = 1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(2) = \frac{1}{3}(2^2) - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = \frac{3}{3} = 1 \][/tex]
- Both functions yield [tex]\( y = 1 \)[/tex]. So, [tex]\((2, 1)\)[/tex] is a common solution.
2. Point [tex]\((1, 0)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(1) = 1 - 1 = 0 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(1) = \frac{1}{3}(1^2) - \frac{1}{3} = \frac{1}{3} - \frac{1}{3} = 0 \][/tex]
- Both functions yield [tex]\( y = 0 \)[/tex]. So, [tex]\((1, 0)\)[/tex] is a common solution.
3. Point [tex]\((2, 3)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(2) = 2 - 1 = 1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(2) = \frac{1}{3}(2^2) - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = 1 \][/tex]
- Since [tex]\( y = 1 \)[/tex] for both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], [tex]\((2, 3)\)[/tex] does not satisfy both functions simultaneously.
4. Point [tex]\((5, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(5) = 5 - 1 = 4 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(5) = \frac{1}{3}(5^2) - \frac{1}{3} = \frac{25}{3} - \frac{1}{3} = \frac{24}{3} = 8 \][/tex]
- Neither [tex]\( f(x) \)[/tex] nor [tex]\( g(x) \)[/tex] yield [tex]\( y = 1 \)[/tex]. Therefore, [tex]\((5, 1)\)[/tex] is not a solution.
5. Point [tex]\((1, 2)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(1) = 1 - 1 = 0 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(1) = \frac{1}{3}(1^2) - \frac{1}{3} = 0 \][/tex]
- Since [tex]\( y = 0 \)[/tex], [tex]\((1, 2)\)[/tex] does not satisfy both functions.
6. Point [tex]\((0, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(0) = 0 - 1 = -1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(0) = \frac{1}{3}(0^2) - \frac{1}{3} = -\frac{1}{3} \][/tex]
- Both functions do not yield [tex]\( y = 1 \)[/tex]. Therefore, [tex]\((0, 1)\)[/tex] is not a solution.
### Conclusion
- The solutions are the points where both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] yield the same [tex]\( y \)[/tex]-value. These points are:
- [tex]\((2, 1)\)[/tex]
- [tex]\((1, 0)\)[/tex]
So, the answer is:
- [tex]\((2, 1)\)[/tex] and [tex]\((1, 0)\)[/tex]
First, let's break down the problem:
### Step 1: Define the Functions
- [tex]\( f(x) = x - 1 \)[/tex]
- [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]
### Step 2: Identify Potential Points
We have been provided with several potential points of intersection:
1. [tex]\((2, 1)\)[/tex]
2. [tex]\((1, 0)\)[/tex]
3. [tex]\((2, 3)\)[/tex]
4. [tex]\((5, 1)\)[/tex]
5. [tex]\((1, 2)\)[/tex]
6. [tex]\((0, 1)\)[/tex]
### Step 3: Verify Each Point
To determine if a given point [tex]\((x, y)\)[/tex] is a solution where the graphs of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] intersect, the y-value must be the same for both functions at that x-value. Let's check each point:
1. Point [tex]\((2, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(2) = 2 - 1 = 1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(2) = \frac{1}{3}(2^2) - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = \frac{3}{3} = 1 \][/tex]
- Both functions yield [tex]\( y = 1 \)[/tex]. So, [tex]\((2, 1)\)[/tex] is a common solution.
2. Point [tex]\((1, 0)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(1) = 1 - 1 = 0 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(1) = \frac{1}{3}(1^2) - \frac{1}{3} = \frac{1}{3} - \frac{1}{3} = 0 \][/tex]
- Both functions yield [tex]\( y = 0 \)[/tex]. So, [tex]\((1, 0)\)[/tex] is a common solution.
3. Point [tex]\((2, 3)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(2) = 2 - 1 = 1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(2) = \frac{1}{3}(2^2) - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = 1 \][/tex]
- Since [tex]\( y = 1 \)[/tex] for both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], [tex]\((2, 3)\)[/tex] does not satisfy both functions simultaneously.
4. Point [tex]\((5, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(5) = 5 - 1 = 4 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(5) = \frac{1}{3}(5^2) - \frac{1}{3} = \frac{25}{3} - \frac{1}{3} = \frac{24}{3} = 8 \][/tex]
- Neither [tex]\( f(x) \)[/tex] nor [tex]\( g(x) \)[/tex] yield [tex]\( y = 1 \)[/tex]. Therefore, [tex]\((5, 1)\)[/tex] is not a solution.
5. Point [tex]\((1, 2)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(1) = 1 - 1 = 0 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(1) = \frac{1}{3}(1^2) - \frac{1}{3} = 0 \][/tex]
- Since [tex]\( y = 0 \)[/tex], [tex]\((1, 2)\)[/tex] does not satisfy both functions.
6. Point [tex]\((0, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(0) = 0 - 1 = -1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(0) = \frac{1}{3}(0^2) - \frac{1}{3} = -\frac{1}{3} \][/tex]
- Both functions do not yield [tex]\( y = 1 \)[/tex]. Therefore, [tex]\((0, 1)\)[/tex] is not a solution.
### Conclusion
- The solutions are the points where both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] yield the same [tex]\( y \)[/tex]-value. These points are:
- [tex]\((2, 1)\)[/tex]
- [tex]\((1, 0)\)[/tex]
So, the answer is:
- [tex]\((2, 1)\)[/tex] and [tex]\((1, 0)\)[/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.