Join IDNLearn.com and become part of a knowledge-sharing community that thrives on curiosity. Get accurate and comprehensive answers from our network of experienced professionals.
Sagot :
To find the common solution points for the functions [tex]\( f(x) = x - 1 \)[/tex] and [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex], we need to determine where these two functions intersect.
First, let's break down the problem:
### Step 1: Define the Functions
- [tex]\( f(x) = x - 1 \)[/tex]
- [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]
### Step 2: Identify Potential Points
We have been provided with several potential points of intersection:
1. [tex]\((2, 1)\)[/tex]
2. [tex]\((1, 0)\)[/tex]
3. [tex]\((2, 3)\)[/tex]
4. [tex]\((5, 1)\)[/tex]
5. [tex]\((1, 2)\)[/tex]
6. [tex]\((0, 1)\)[/tex]
### Step 3: Verify Each Point
To determine if a given point [tex]\((x, y)\)[/tex] is a solution where the graphs of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] intersect, the y-value must be the same for both functions at that x-value. Let's check each point:
1. Point [tex]\((2, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(2) = 2 - 1 = 1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(2) = \frac{1}{3}(2^2) - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = \frac{3}{3} = 1 \][/tex]
- Both functions yield [tex]\( y = 1 \)[/tex]. So, [tex]\((2, 1)\)[/tex] is a common solution.
2. Point [tex]\((1, 0)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(1) = 1 - 1 = 0 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(1) = \frac{1}{3}(1^2) - \frac{1}{3} = \frac{1}{3} - \frac{1}{3} = 0 \][/tex]
- Both functions yield [tex]\( y = 0 \)[/tex]. So, [tex]\((1, 0)\)[/tex] is a common solution.
3. Point [tex]\((2, 3)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(2) = 2 - 1 = 1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(2) = \frac{1}{3}(2^2) - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = 1 \][/tex]
- Since [tex]\( y = 1 \)[/tex] for both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], [tex]\((2, 3)\)[/tex] does not satisfy both functions simultaneously.
4. Point [tex]\((5, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(5) = 5 - 1 = 4 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(5) = \frac{1}{3}(5^2) - \frac{1}{3} = \frac{25}{3} - \frac{1}{3} = \frac{24}{3} = 8 \][/tex]
- Neither [tex]\( f(x) \)[/tex] nor [tex]\( g(x) \)[/tex] yield [tex]\( y = 1 \)[/tex]. Therefore, [tex]\((5, 1)\)[/tex] is not a solution.
5. Point [tex]\((1, 2)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(1) = 1 - 1 = 0 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(1) = \frac{1}{3}(1^2) - \frac{1}{3} = 0 \][/tex]
- Since [tex]\( y = 0 \)[/tex], [tex]\((1, 2)\)[/tex] does not satisfy both functions.
6. Point [tex]\((0, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(0) = 0 - 1 = -1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(0) = \frac{1}{3}(0^2) - \frac{1}{3} = -\frac{1}{3} \][/tex]
- Both functions do not yield [tex]\( y = 1 \)[/tex]. Therefore, [tex]\((0, 1)\)[/tex] is not a solution.
### Conclusion
- The solutions are the points where both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] yield the same [tex]\( y \)[/tex]-value. These points are:
- [tex]\((2, 1)\)[/tex]
- [tex]\((1, 0)\)[/tex]
So, the answer is:
- [tex]\((2, 1)\)[/tex] and [tex]\((1, 0)\)[/tex]
First, let's break down the problem:
### Step 1: Define the Functions
- [tex]\( f(x) = x - 1 \)[/tex]
- [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]
### Step 2: Identify Potential Points
We have been provided with several potential points of intersection:
1. [tex]\((2, 1)\)[/tex]
2. [tex]\((1, 0)\)[/tex]
3. [tex]\((2, 3)\)[/tex]
4. [tex]\((5, 1)\)[/tex]
5. [tex]\((1, 2)\)[/tex]
6. [tex]\((0, 1)\)[/tex]
### Step 3: Verify Each Point
To determine if a given point [tex]\((x, y)\)[/tex] is a solution where the graphs of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] intersect, the y-value must be the same for both functions at that x-value. Let's check each point:
1. Point [tex]\((2, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(2) = 2 - 1 = 1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(2) = \frac{1}{3}(2^2) - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = \frac{3}{3} = 1 \][/tex]
- Both functions yield [tex]\( y = 1 \)[/tex]. So, [tex]\((2, 1)\)[/tex] is a common solution.
2. Point [tex]\((1, 0)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(1) = 1 - 1 = 0 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(1) = \frac{1}{3}(1^2) - \frac{1}{3} = \frac{1}{3} - \frac{1}{3} = 0 \][/tex]
- Both functions yield [tex]\( y = 0 \)[/tex]. So, [tex]\((1, 0)\)[/tex] is a common solution.
3. Point [tex]\((2, 3)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(2) = 2 - 1 = 1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(2) = \frac{1}{3}(2^2) - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = 1 \][/tex]
- Since [tex]\( y = 1 \)[/tex] for both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], [tex]\((2, 3)\)[/tex] does not satisfy both functions simultaneously.
4. Point [tex]\((5, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(5) = 5 - 1 = 4 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(5) = \frac{1}{3}(5^2) - \frac{1}{3} = \frac{25}{3} - \frac{1}{3} = \frac{24}{3} = 8 \][/tex]
- Neither [tex]\( f(x) \)[/tex] nor [tex]\( g(x) \)[/tex] yield [tex]\( y = 1 \)[/tex]. Therefore, [tex]\((5, 1)\)[/tex] is not a solution.
5. Point [tex]\((1, 2)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(1) = 1 - 1 = 0 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(1) = \frac{1}{3}(1^2) - \frac{1}{3} = 0 \][/tex]
- Since [tex]\( y = 0 \)[/tex], [tex]\((1, 2)\)[/tex] does not satisfy both functions.
6. Point [tex]\((0, 1)\)[/tex]:
- For [tex]\( f(x) = x - 1 \)[/tex]:
[tex]\[ f(0) = 0 - 1 = -1 \][/tex]
- For [tex]\( g(x) = \frac{1}{3}x^2 - \frac{1}{3} \)[/tex]:
[tex]\[ g(0) = \frac{1}{3}(0^2) - \frac{1}{3} = -\frac{1}{3} \][/tex]
- Both functions do not yield [tex]\( y = 1 \)[/tex]. Therefore, [tex]\((0, 1)\)[/tex] is not a solution.
### Conclusion
- The solutions are the points where both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] yield the same [tex]\( y \)[/tex]-value. These points are:
- [tex]\((2, 1)\)[/tex]
- [tex]\((1, 0)\)[/tex]
So, the answer is:
- [tex]\((2, 1)\)[/tex] and [tex]\((1, 0)\)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.