IDNLearn.com is designed to help you find reliable answers to any question you have. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
### Part (b): Dimensional Analysis
Escape Velocity Formula: [tex]\(\sqrt{\frac{R}{2GM}}\)[/tex]
1. Identify Dimensional Symbols:
- [tex]\(R\)[/tex]: Length (L)
- [tex]\(G\)[/tex]: Gravitational constant (L[tex]\(^3\)[/tex]M[tex]\(^-1\)[/tex]T[tex]\(^-2\)[/tex])
- [tex]\(M\)[/tex]: Mass (M)
2. Dimensional Formula Analysis:
- The formula for escape velocity is
[tex]\[ \sqrt{\frac{R}{2GM}} \][/tex]
- Dimensions of [tex]\(R\)[/tex] (L)
- Dimensions of [tex]\(2GM\)[/tex] (L[tex]\(^3\)[/tex]M[tex]\(^-1\)[/tex]T[tex]\(^-2\)[/tex]) * M = L[tex]\(^3\)[/tex]T[tex]\(^-2\)[/tex]
- Thus,
[tex]\[ \frac{R}{2GM} = \frac{[L]}{[L^3M^{-1}T^{-2}][M]} = \frac{[L]}{[L^3T^{-2}]} = [L^{-2}T^2] \][/tex]
- Taking the square root:
[tex]\[ \sqrt{\frac{R}{2GM}} = [L^{-2}T^2]^{1/2} = [L^{-1}T] \][/tex]
- But for velocity, dimensions should be:
[tex]\[ [LT^{-1}] \][/tex]
Therefore, the dimensional analysis shows that the given formula [tex]\(\sqrt{\frac{R}{2GM}}\)[/tex] is incorrect for representing velocity. The formula's derived dimensions [tex]\([L^{-1}T]\)[/tex] do not match the dimensions of velocity [tex]\([LT^{-1}]\)[/tex].
Time Period Formula: [tex]\(T= 2\pi \sqrt{\frac{M}{K}}\)[/tex]
1. Identify Dimensional Symbols:
- [tex]\(T\)[/tex]: Time (T)
- [tex]\(M\)[/tex]: Mass (M)
- [tex]\(K\)[/tex]: Force per unit displacement (ML[tex]\(^1\)[/tex]T[tex]\(^-2\)[/tex])
2. Dimensional Formula Analysis:
- The given formula for time period is
[tex]\[ 2\pi \sqrt{\frac{M}{K}} \][/tex]
- Dimensions of [tex]\(M\)[/tex] (M)
- Dimensions of [tex]\(K\)[/tex] (ML[tex]\(^1\)[/tex]T[tex]\(^-2\)[/tex])
- Thus,
[tex]\[ \frac{M}{K} = \frac{[M]}{[ML^{-1}T^{-2}]} = [L^1T^2] \][/tex]
- Taking the square root:
[tex]\[ \sqrt{\frac{M}{K}} = [L^1T^2]^{1/2} = [L^{1/2}T] \][/tex]
Hence, the formula
[tex]\[ 2\pi \sqrt{\frac{M}{K}} \][/tex]
has the correct dimension [tex]\([T]\)[/tex], confirming that the time period formula is dimensionally correct.
### Part (c): Measurement of the Rectangular Lamina
Given:
- Length [tex]\(L = 2.3 \, \text{cm} \pm 0.2 \, \text{cm}\)[/tex]
- Breadth [tex]\(B = 1.6 \, \text{cm} \pm 0.1 \, \text{cm}\)[/tex]
1. Area Calculation:
[tex]\[ \text{Area} = L \times B = 2.3 \, \text{cm} \times 1.6 \, \text{cm} = 3.68 \, \text{cm}^2 \][/tex]
2. Uncertainty in Area:
Using the formula for propagation of uncertainties for multiplication:
[tex]\[ \frac{\Delta A}{A} = \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta B}{B}\right)^2} \][/tex]
Where:
- [tex]\(\Delta L = 0.2 \, \text{cm}\)[/tex]
- [tex]\(L = 2.3 \, \text{cm}\)[/tex]
- [tex]\(\Delta B = 0.1 \, \text{cm}\)[/tex]
- [tex]\(B = 1.6 \, \text{cm}\)[/tex]
Calculate:
[tex]\[ \frac{\Delta A}{3.68} = \sqrt{\left(\frac{0.2}{2.3}\right)^2 + \left(\frac{0.1}{1.6}\right)^2} \][/tex]
[tex]\[ \frac{\Delta A}{3.68} \approx \sqrt{(0.087)^2 + (0.0625)^2} \][/tex]
[tex]\[ \frac{\Delta A}{3.68} \approx \sqrt{0.007569 + 0.00390625} \approx \sqrt{0.01147525} \approx 0.107 \][/tex]
So,
[tex]\[ \Delta A \approx 3.68 \times 0.107 \approx 0.39476 \approx 0.39 \, \text{cm}^2 \][/tex]
Therefore, the area with uncertainty is:
[tex]\[ \text{Area} = 3.68 \, \text{cm}^2 \pm 0.39 \, \text{cm}^2 \][/tex]
To summarize:
- The formula for escape velocity [tex]\(\sqrt{\frac{R}{2GM}}\)[/tex] is dimensionally incorrect.
- The formula for time period [tex]\(T = 2\pi \sqrt{\frac{M}{K}}\)[/tex] is dimensionally correct.
- The area of the rectangular lamina is [tex]\(3.68 \, \text{cm}^2\)[/tex] with an uncertainty of [tex]\(\pm 0.39 \, \text{cm}^2\)[/tex].
Escape Velocity Formula: [tex]\(\sqrt{\frac{R}{2GM}}\)[/tex]
1. Identify Dimensional Symbols:
- [tex]\(R\)[/tex]: Length (L)
- [tex]\(G\)[/tex]: Gravitational constant (L[tex]\(^3\)[/tex]M[tex]\(^-1\)[/tex]T[tex]\(^-2\)[/tex])
- [tex]\(M\)[/tex]: Mass (M)
2. Dimensional Formula Analysis:
- The formula for escape velocity is
[tex]\[ \sqrt{\frac{R}{2GM}} \][/tex]
- Dimensions of [tex]\(R\)[/tex] (L)
- Dimensions of [tex]\(2GM\)[/tex] (L[tex]\(^3\)[/tex]M[tex]\(^-1\)[/tex]T[tex]\(^-2\)[/tex]) * M = L[tex]\(^3\)[/tex]T[tex]\(^-2\)[/tex]
- Thus,
[tex]\[ \frac{R}{2GM} = \frac{[L]}{[L^3M^{-1}T^{-2}][M]} = \frac{[L]}{[L^3T^{-2}]} = [L^{-2}T^2] \][/tex]
- Taking the square root:
[tex]\[ \sqrt{\frac{R}{2GM}} = [L^{-2}T^2]^{1/2} = [L^{-1}T] \][/tex]
- But for velocity, dimensions should be:
[tex]\[ [LT^{-1}] \][/tex]
Therefore, the dimensional analysis shows that the given formula [tex]\(\sqrt{\frac{R}{2GM}}\)[/tex] is incorrect for representing velocity. The formula's derived dimensions [tex]\([L^{-1}T]\)[/tex] do not match the dimensions of velocity [tex]\([LT^{-1}]\)[/tex].
Time Period Formula: [tex]\(T= 2\pi \sqrt{\frac{M}{K}}\)[/tex]
1. Identify Dimensional Symbols:
- [tex]\(T\)[/tex]: Time (T)
- [tex]\(M\)[/tex]: Mass (M)
- [tex]\(K\)[/tex]: Force per unit displacement (ML[tex]\(^1\)[/tex]T[tex]\(^-2\)[/tex])
2. Dimensional Formula Analysis:
- The given formula for time period is
[tex]\[ 2\pi \sqrt{\frac{M}{K}} \][/tex]
- Dimensions of [tex]\(M\)[/tex] (M)
- Dimensions of [tex]\(K\)[/tex] (ML[tex]\(^1\)[/tex]T[tex]\(^-2\)[/tex])
- Thus,
[tex]\[ \frac{M}{K} = \frac{[M]}{[ML^{-1}T^{-2}]} = [L^1T^2] \][/tex]
- Taking the square root:
[tex]\[ \sqrt{\frac{M}{K}} = [L^1T^2]^{1/2} = [L^{1/2}T] \][/tex]
Hence, the formula
[tex]\[ 2\pi \sqrt{\frac{M}{K}} \][/tex]
has the correct dimension [tex]\([T]\)[/tex], confirming that the time period formula is dimensionally correct.
### Part (c): Measurement of the Rectangular Lamina
Given:
- Length [tex]\(L = 2.3 \, \text{cm} \pm 0.2 \, \text{cm}\)[/tex]
- Breadth [tex]\(B = 1.6 \, \text{cm} \pm 0.1 \, \text{cm}\)[/tex]
1. Area Calculation:
[tex]\[ \text{Area} = L \times B = 2.3 \, \text{cm} \times 1.6 \, \text{cm} = 3.68 \, \text{cm}^2 \][/tex]
2. Uncertainty in Area:
Using the formula for propagation of uncertainties for multiplication:
[tex]\[ \frac{\Delta A}{A} = \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta B}{B}\right)^2} \][/tex]
Where:
- [tex]\(\Delta L = 0.2 \, \text{cm}\)[/tex]
- [tex]\(L = 2.3 \, \text{cm}\)[/tex]
- [tex]\(\Delta B = 0.1 \, \text{cm}\)[/tex]
- [tex]\(B = 1.6 \, \text{cm}\)[/tex]
Calculate:
[tex]\[ \frac{\Delta A}{3.68} = \sqrt{\left(\frac{0.2}{2.3}\right)^2 + \left(\frac{0.1}{1.6}\right)^2} \][/tex]
[tex]\[ \frac{\Delta A}{3.68} \approx \sqrt{(0.087)^2 + (0.0625)^2} \][/tex]
[tex]\[ \frac{\Delta A}{3.68} \approx \sqrt{0.007569 + 0.00390625} \approx \sqrt{0.01147525} \approx 0.107 \][/tex]
So,
[tex]\[ \Delta A \approx 3.68 \times 0.107 \approx 0.39476 \approx 0.39 \, \text{cm}^2 \][/tex]
Therefore, the area with uncertainty is:
[tex]\[ \text{Area} = 3.68 \, \text{cm}^2 \pm 0.39 \, \text{cm}^2 \][/tex]
To summarize:
- The formula for escape velocity [tex]\(\sqrt{\frac{R}{2GM}}\)[/tex] is dimensionally incorrect.
- The formula for time period [tex]\(T = 2\pi \sqrt{\frac{M}{K}}\)[/tex] is dimensionally correct.
- The area of the rectangular lamina is [tex]\(3.68 \, \text{cm}^2\)[/tex] with an uncertainty of [tex]\(\pm 0.39 \, \text{cm}^2\)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.