Get the information you need with the help of IDNLearn.com's expert community. Our experts provide prompt and accurate answers to help you make informed decisions on any topic.

Functions, Limits, and Continuity

Example 11: Prove that [tex]\lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x+a} - \sqrt{x}) = \frac{a}{2}[/tex].

Solution:

L.H.S. [tex]= \lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x+a} - \sqrt{x}) \times \frac{\sqrt{x+a}+\sqrt{x}}{\sqrt{x+a}+\sqrt{x}}[/tex]

[tex]= \lim_{x \rightarrow \infty} \frac{\sqrt{x}(x + a - x)}{\sqrt{x+a}+\sqrt{x}}[/tex]

[tex]= \lim_{x \rightarrow \infty} \frac{a\sqrt{x}}{\sqrt{x+a}+\sqrt{x}}[/tex]

As [tex]x \rightarrow \infty[/tex], the expression simplifies to:

[tex]= \frac{a}{2}[/tex]


Sagot :

To prove that [tex]\(\lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x+a}-\sqrt{x})=\frac{a}{2}\)[/tex], let's go through the calculations step by step.

First, we start with the expression we want to find the limit of:
[tex]\[ \lim_{x \to \infty} \sqrt{x}(\sqrt{x + a} - \sqrt{x}) \][/tex]

To simplify, we multiply both the numerator and the denominator by the conjugate of the expression inside the limit:
[tex]\[ \text{Conjugate} = \sqrt{x + a} + \sqrt{x} \][/tex]

So, multiplying by the conjugate, we have:
[tex]\[ \lim_{x \to \infty} \sqrt{x}(\sqrt{x + a} - \sqrt{x}) \cdot \frac{\sqrt{x + a} + \sqrt{x}}{\sqrt{x + a} + \sqrt{x}} \][/tex]

This can be broken down into:
[tex]\[ \lim_{x \to \infty} \frac{\sqrt{x} \left( \sqrt{x + a} - \sqrt{x} \right) \left( \sqrt{x + a} + \sqrt{x} \right)}{\sqrt{x + a} + \sqrt{x}} \][/tex]

Notice that in the numerator, we have a difference of squares:
[tex]\[ (\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x}) = (x + a - x) = a \][/tex]

Therefore, our limit expression now simplifies to:
[tex]\[ \lim_{x \to \infty} \frac{\sqrt{x} \cdot a}{\sqrt{x + a} + \sqrt{x}} \][/tex]

Factoring [tex]\(\sqrt{x}\)[/tex] out of the denominator:
[tex]\[ \lim_{x \to \infty} \frac{a \sqrt{x}}{\sqrt{x}(\sqrt{1 + \frac{a}{x}} + 1)} \][/tex]

Simplify further:
[tex]\[ \lim_{x \to \infty} \frac{a \sqrt{x}}{\sqrt{x} \left( \sqrt{1 + \frac{a}{x}} + 1 \right)} \][/tex]

Since [tex]\(\sqrt{x}\)[/tex] is in both the numerator and the denominator, it cancels out:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{1 + \frac{a}{x}} + 1} \][/tex]

As [tex]\(x\)[/tex] approaches infinity, [tex]\(\frac{a}{x}\)[/tex] approaches 0. So, the denominator simplifies to:
[tex]\[ \sqrt{1 + 0} + 1 = 1 + 1 = 2 \][/tex]

Thus, the limit simplifies to:
[tex]\[ \frac{a}{2} \][/tex]

Therefore, we have successfully shown that:
[tex]\[ \lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x+a}-\sqrt{x}) = \frac{a}{2} \][/tex]