From everyday questions to specialized queries, IDNLearn.com has the answers. Our platform is designed to provide reliable and thorough answers to all your questions, no matter the topic.
Sagot :
To prove that [tex]\(\lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x+a}-\sqrt{x})=\frac{a}{2}\)[/tex], let's go through the calculations step by step.
First, we start with the expression we want to find the limit of:
[tex]\[ \lim_{x \to \infty} \sqrt{x}(\sqrt{x + a} - \sqrt{x}) \][/tex]
To simplify, we multiply both the numerator and the denominator by the conjugate of the expression inside the limit:
[tex]\[ \text{Conjugate} = \sqrt{x + a} + \sqrt{x} \][/tex]
So, multiplying by the conjugate, we have:
[tex]\[ \lim_{x \to \infty} \sqrt{x}(\sqrt{x + a} - \sqrt{x}) \cdot \frac{\sqrt{x + a} + \sqrt{x}}{\sqrt{x + a} + \sqrt{x}} \][/tex]
This can be broken down into:
[tex]\[ \lim_{x \to \infty} \frac{\sqrt{x} \left( \sqrt{x + a} - \sqrt{x} \right) \left( \sqrt{x + a} + \sqrt{x} \right)}{\sqrt{x + a} + \sqrt{x}} \][/tex]
Notice that in the numerator, we have a difference of squares:
[tex]\[ (\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x}) = (x + a - x) = a \][/tex]
Therefore, our limit expression now simplifies to:
[tex]\[ \lim_{x \to \infty} \frac{\sqrt{x} \cdot a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
Factoring [tex]\(\sqrt{x}\)[/tex] out of the denominator:
[tex]\[ \lim_{x \to \infty} \frac{a \sqrt{x}}{\sqrt{x}(\sqrt{1 + \frac{a}{x}} + 1)} \][/tex]
Simplify further:
[tex]\[ \lim_{x \to \infty} \frac{a \sqrt{x}}{\sqrt{x} \left( \sqrt{1 + \frac{a}{x}} + 1 \right)} \][/tex]
Since [tex]\(\sqrt{x}\)[/tex] is in both the numerator and the denominator, it cancels out:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{1 + \frac{a}{x}} + 1} \][/tex]
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\frac{a}{x}\)[/tex] approaches 0. So, the denominator simplifies to:
[tex]\[ \sqrt{1 + 0} + 1 = 1 + 1 = 2 \][/tex]
Thus, the limit simplifies to:
[tex]\[ \frac{a}{2} \][/tex]
Therefore, we have successfully shown that:
[tex]\[ \lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x+a}-\sqrt{x}) = \frac{a}{2} \][/tex]
First, we start with the expression we want to find the limit of:
[tex]\[ \lim_{x \to \infty} \sqrt{x}(\sqrt{x + a} - \sqrt{x}) \][/tex]
To simplify, we multiply both the numerator and the denominator by the conjugate of the expression inside the limit:
[tex]\[ \text{Conjugate} = \sqrt{x + a} + \sqrt{x} \][/tex]
So, multiplying by the conjugate, we have:
[tex]\[ \lim_{x \to \infty} \sqrt{x}(\sqrt{x + a} - \sqrt{x}) \cdot \frac{\sqrt{x + a} + \sqrt{x}}{\sqrt{x + a} + \sqrt{x}} \][/tex]
This can be broken down into:
[tex]\[ \lim_{x \to \infty} \frac{\sqrt{x} \left( \sqrt{x + a} - \sqrt{x} \right) \left( \sqrt{x + a} + \sqrt{x} \right)}{\sqrt{x + a} + \sqrt{x}} \][/tex]
Notice that in the numerator, we have a difference of squares:
[tex]\[ (\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x}) = (x + a - x) = a \][/tex]
Therefore, our limit expression now simplifies to:
[tex]\[ \lim_{x \to \infty} \frac{\sqrt{x} \cdot a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
Factoring [tex]\(\sqrt{x}\)[/tex] out of the denominator:
[tex]\[ \lim_{x \to \infty} \frac{a \sqrt{x}}{\sqrt{x}(\sqrt{1 + \frac{a}{x}} + 1)} \][/tex]
Simplify further:
[tex]\[ \lim_{x \to \infty} \frac{a \sqrt{x}}{\sqrt{x} \left( \sqrt{1 + \frac{a}{x}} + 1 \right)} \][/tex]
Since [tex]\(\sqrt{x}\)[/tex] is in both the numerator and the denominator, it cancels out:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{1 + \frac{a}{x}} + 1} \][/tex]
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\frac{a}{x}\)[/tex] approaches 0. So, the denominator simplifies to:
[tex]\[ \sqrt{1 + 0} + 1 = 1 + 1 = 2 \][/tex]
Thus, the limit simplifies to:
[tex]\[ \frac{a}{2} \][/tex]
Therefore, we have successfully shown that:
[tex]\[ \lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x+a}-\sqrt{x}) = \frac{a}{2} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.