IDNLearn.com provides a seamless experience for finding the answers you need. Ask any question and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
To determine the dimensions of time [tex]\(T\)[/tex] in terms of [tex]\(G\)[/tex] (gravitational constant), [tex]\(h\)[/tex] (Planck's constant), and [tex]\(c\)[/tex] (speed of light), we need to conduct a dimensional analysis using these fundamental units.
Let's examine the dimensions of each unit:
1. Gravitational constant [tex]\(G\)[/tex]:
[tex]\[ [G] = \frac{L^3}{M T^2} \][/tex]
2. Planck's constant [tex]\(h\)[/tex]:
[tex]\[ [h] = M L^2 T^{-1} \][/tex]
3. Speed of light [tex]\(c\)[/tex]:
[tex]\[ [c] = \frac{L}{T} \][/tex]
We want to express the dimension of time [tex]\([T]\)[/tex] in the form:
[tex]\[ [T] = G^a \cdot h^b \cdot c^c \][/tex]
### Step-by-Step Dimensional Analysis:
1. Expressing Dimensions:
Using the given forms:
[tex]\[ [G^a] = \left( \frac{L^3}{M T^2} \right)^a = \frac{L^{3a}}{M^a T^{2a}} \][/tex]
[tex]\[ [h^b] = (M L^2 T^{-1})^b = M^b L^{2b} T^{-b} \][/tex]
[tex]\[ [c^c] = \left( \frac{L}{T} \right)^c = L^c T^{-c} \][/tex]
2. Combining Dimensions:
Multiply these expressions together to form:
[tex]\[ [G^a h^b c^c] = \frac{L^{3a} M^b L^{2b} L^c}{M^a T^{2a} T^b T^c} = \frac{L^{3a + 2b + c} M^b}{M^a T^{2a + b + c}} \][/tex]
Simplifying the combined expressions,
[tex]\[ [G^a h^b c^c] = \frac{L^{3a + 2b + c} M^{b - a}}{T^{2a + b + c}} \][/tex]
3. Equating with Time (on both sides):
Since we want this to represent the dimension of time [tex]\([T]\)[/tex], equate powers of [tex]\(L\)[/tex], [tex]\(M\)[/tex], and [tex]\(T\)[/tex] to match [tex]\(T\)[/tex] which is simply:
[tex]\[ [T] = T^1 \][/tex]
Thus, we establish the following equations by matching the exponents of [tex]\(L\)[/tex], [tex]\(M\)[/tex], and [tex]\(T\)[/tex]:
- For [tex]\(L\)[/tex] (length):
[tex]\[ 3a + 2b + c = 0 \][/tex]
- For [tex]\(M\)[/tex] (mass):
[tex]\[ b - a = 0 \quad \text{or}\quad b = a \][/tex]
- For [tex]\(T\)[/tex] (time):
[tex]\[ -2a - b - c = 1 \][/tex]
4. Solving the System of Equations:
Substitute [tex]\(b = a\)[/tex] into the first and third equations:
[tex]\[ 3a + 2a + c = 0 \Rightarrow 5a + c = 0 \Rightarrow c = -5a \][/tex]
[tex]\[ -2a - a - (-5a) = 1 \Rightarrow -3a + 5a = 1 \Rightarrow 2a = 1 \Rightarrow a = \frac{1}{2} \][/tex]
Since [tex]\(b = a\)[/tex]:
[tex]\[ b = \frac{1}{2} \][/tex]
And from [tex]\(c = -5a\)[/tex]:
[tex]\[ c = -5 \left(\frac{1}{2}\right) = -\frac{5}{2} \][/tex]
Thus, the dimensions of time [tex]\( [T] \)[/tex] in terms of [tex]\(G\)[/tex], [tex]\(h\)[/tex], and [tex]\(c\)[/tex] are:
[tex]\[ [T] = G^{\frac{1}{2}} \cdot h^{\frac{1}{2}} \cdot c^{-\frac{5}{2}} \][/tex]
The correct answer is:
[tex]\[ \boxed{a} \][/tex]
Let's examine the dimensions of each unit:
1. Gravitational constant [tex]\(G\)[/tex]:
[tex]\[ [G] = \frac{L^3}{M T^2} \][/tex]
2. Planck's constant [tex]\(h\)[/tex]:
[tex]\[ [h] = M L^2 T^{-1} \][/tex]
3. Speed of light [tex]\(c\)[/tex]:
[tex]\[ [c] = \frac{L}{T} \][/tex]
We want to express the dimension of time [tex]\([T]\)[/tex] in the form:
[tex]\[ [T] = G^a \cdot h^b \cdot c^c \][/tex]
### Step-by-Step Dimensional Analysis:
1. Expressing Dimensions:
Using the given forms:
[tex]\[ [G^a] = \left( \frac{L^3}{M T^2} \right)^a = \frac{L^{3a}}{M^a T^{2a}} \][/tex]
[tex]\[ [h^b] = (M L^2 T^{-1})^b = M^b L^{2b} T^{-b} \][/tex]
[tex]\[ [c^c] = \left( \frac{L}{T} \right)^c = L^c T^{-c} \][/tex]
2. Combining Dimensions:
Multiply these expressions together to form:
[tex]\[ [G^a h^b c^c] = \frac{L^{3a} M^b L^{2b} L^c}{M^a T^{2a} T^b T^c} = \frac{L^{3a + 2b + c} M^b}{M^a T^{2a + b + c}} \][/tex]
Simplifying the combined expressions,
[tex]\[ [G^a h^b c^c] = \frac{L^{3a + 2b + c} M^{b - a}}{T^{2a + b + c}} \][/tex]
3. Equating with Time (on both sides):
Since we want this to represent the dimension of time [tex]\([T]\)[/tex], equate powers of [tex]\(L\)[/tex], [tex]\(M\)[/tex], and [tex]\(T\)[/tex] to match [tex]\(T\)[/tex] which is simply:
[tex]\[ [T] = T^1 \][/tex]
Thus, we establish the following equations by matching the exponents of [tex]\(L\)[/tex], [tex]\(M\)[/tex], and [tex]\(T\)[/tex]:
- For [tex]\(L\)[/tex] (length):
[tex]\[ 3a + 2b + c = 0 \][/tex]
- For [tex]\(M\)[/tex] (mass):
[tex]\[ b - a = 0 \quad \text{or}\quad b = a \][/tex]
- For [tex]\(T\)[/tex] (time):
[tex]\[ -2a - b - c = 1 \][/tex]
4. Solving the System of Equations:
Substitute [tex]\(b = a\)[/tex] into the first and third equations:
[tex]\[ 3a + 2a + c = 0 \Rightarrow 5a + c = 0 \Rightarrow c = -5a \][/tex]
[tex]\[ -2a - a - (-5a) = 1 \Rightarrow -3a + 5a = 1 \Rightarrow 2a = 1 \Rightarrow a = \frac{1}{2} \][/tex]
Since [tex]\(b = a\)[/tex]:
[tex]\[ b = \frac{1}{2} \][/tex]
And from [tex]\(c = -5a\)[/tex]:
[tex]\[ c = -5 \left(\frac{1}{2}\right) = -\frac{5}{2} \][/tex]
Thus, the dimensions of time [tex]\( [T] \)[/tex] in terms of [tex]\(G\)[/tex], [tex]\(h\)[/tex], and [tex]\(c\)[/tex] are:
[tex]\[ [T] = G^{\frac{1}{2}} \cdot h^{\frac{1}{2}} \cdot c^{-\frac{5}{2}} \][/tex]
The correct answer is:
[tex]\[ \boxed{a} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.