Get detailed and accurate answers to your questions on IDNLearn.com. Our platform offers reliable and detailed answers, ensuring you have the information you need.
Sagot :
To determine the dimensions of time [tex]\(T\)[/tex] in terms of [tex]\(G\)[/tex] (gravitational constant), [tex]\(h\)[/tex] (Planck's constant), and [tex]\(c\)[/tex] (speed of light), we need to conduct a dimensional analysis using these fundamental units.
Let's examine the dimensions of each unit:
1. Gravitational constant [tex]\(G\)[/tex]:
[tex]\[ [G] = \frac{L^3}{M T^2} \][/tex]
2. Planck's constant [tex]\(h\)[/tex]:
[tex]\[ [h] = M L^2 T^{-1} \][/tex]
3. Speed of light [tex]\(c\)[/tex]:
[tex]\[ [c] = \frac{L}{T} \][/tex]
We want to express the dimension of time [tex]\([T]\)[/tex] in the form:
[tex]\[ [T] = G^a \cdot h^b \cdot c^c \][/tex]
### Step-by-Step Dimensional Analysis:
1. Expressing Dimensions:
Using the given forms:
[tex]\[ [G^a] = \left( \frac{L^3}{M T^2} \right)^a = \frac{L^{3a}}{M^a T^{2a}} \][/tex]
[tex]\[ [h^b] = (M L^2 T^{-1})^b = M^b L^{2b} T^{-b} \][/tex]
[tex]\[ [c^c] = \left( \frac{L}{T} \right)^c = L^c T^{-c} \][/tex]
2. Combining Dimensions:
Multiply these expressions together to form:
[tex]\[ [G^a h^b c^c] = \frac{L^{3a} M^b L^{2b} L^c}{M^a T^{2a} T^b T^c} = \frac{L^{3a + 2b + c} M^b}{M^a T^{2a + b + c}} \][/tex]
Simplifying the combined expressions,
[tex]\[ [G^a h^b c^c] = \frac{L^{3a + 2b + c} M^{b - a}}{T^{2a + b + c}} \][/tex]
3. Equating with Time (on both sides):
Since we want this to represent the dimension of time [tex]\([T]\)[/tex], equate powers of [tex]\(L\)[/tex], [tex]\(M\)[/tex], and [tex]\(T\)[/tex] to match [tex]\(T\)[/tex] which is simply:
[tex]\[ [T] = T^1 \][/tex]
Thus, we establish the following equations by matching the exponents of [tex]\(L\)[/tex], [tex]\(M\)[/tex], and [tex]\(T\)[/tex]:
- For [tex]\(L\)[/tex] (length):
[tex]\[ 3a + 2b + c = 0 \][/tex]
- For [tex]\(M\)[/tex] (mass):
[tex]\[ b - a = 0 \quad \text{or}\quad b = a \][/tex]
- For [tex]\(T\)[/tex] (time):
[tex]\[ -2a - b - c = 1 \][/tex]
4. Solving the System of Equations:
Substitute [tex]\(b = a\)[/tex] into the first and third equations:
[tex]\[ 3a + 2a + c = 0 \Rightarrow 5a + c = 0 \Rightarrow c = -5a \][/tex]
[tex]\[ -2a - a - (-5a) = 1 \Rightarrow -3a + 5a = 1 \Rightarrow 2a = 1 \Rightarrow a = \frac{1}{2} \][/tex]
Since [tex]\(b = a\)[/tex]:
[tex]\[ b = \frac{1}{2} \][/tex]
And from [tex]\(c = -5a\)[/tex]:
[tex]\[ c = -5 \left(\frac{1}{2}\right) = -\frac{5}{2} \][/tex]
Thus, the dimensions of time [tex]\( [T] \)[/tex] in terms of [tex]\(G\)[/tex], [tex]\(h\)[/tex], and [tex]\(c\)[/tex] are:
[tex]\[ [T] = G^{\frac{1}{2}} \cdot h^{\frac{1}{2}} \cdot c^{-\frac{5}{2}} \][/tex]
The correct answer is:
[tex]\[ \boxed{a} \][/tex]
Let's examine the dimensions of each unit:
1. Gravitational constant [tex]\(G\)[/tex]:
[tex]\[ [G] = \frac{L^3}{M T^2} \][/tex]
2. Planck's constant [tex]\(h\)[/tex]:
[tex]\[ [h] = M L^2 T^{-1} \][/tex]
3. Speed of light [tex]\(c\)[/tex]:
[tex]\[ [c] = \frac{L}{T} \][/tex]
We want to express the dimension of time [tex]\([T]\)[/tex] in the form:
[tex]\[ [T] = G^a \cdot h^b \cdot c^c \][/tex]
### Step-by-Step Dimensional Analysis:
1. Expressing Dimensions:
Using the given forms:
[tex]\[ [G^a] = \left( \frac{L^3}{M T^2} \right)^a = \frac{L^{3a}}{M^a T^{2a}} \][/tex]
[tex]\[ [h^b] = (M L^2 T^{-1})^b = M^b L^{2b} T^{-b} \][/tex]
[tex]\[ [c^c] = \left( \frac{L}{T} \right)^c = L^c T^{-c} \][/tex]
2. Combining Dimensions:
Multiply these expressions together to form:
[tex]\[ [G^a h^b c^c] = \frac{L^{3a} M^b L^{2b} L^c}{M^a T^{2a} T^b T^c} = \frac{L^{3a + 2b + c} M^b}{M^a T^{2a + b + c}} \][/tex]
Simplifying the combined expressions,
[tex]\[ [G^a h^b c^c] = \frac{L^{3a + 2b + c} M^{b - a}}{T^{2a + b + c}} \][/tex]
3. Equating with Time (on both sides):
Since we want this to represent the dimension of time [tex]\([T]\)[/tex], equate powers of [tex]\(L\)[/tex], [tex]\(M\)[/tex], and [tex]\(T\)[/tex] to match [tex]\(T\)[/tex] which is simply:
[tex]\[ [T] = T^1 \][/tex]
Thus, we establish the following equations by matching the exponents of [tex]\(L\)[/tex], [tex]\(M\)[/tex], and [tex]\(T\)[/tex]:
- For [tex]\(L\)[/tex] (length):
[tex]\[ 3a + 2b + c = 0 \][/tex]
- For [tex]\(M\)[/tex] (mass):
[tex]\[ b - a = 0 \quad \text{or}\quad b = a \][/tex]
- For [tex]\(T\)[/tex] (time):
[tex]\[ -2a - b - c = 1 \][/tex]
4. Solving the System of Equations:
Substitute [tex]\(b = a\)[/tex] into the first and third equations:
[tex]\[ 3a + 2a + c = 0 \Rightarrow 5a + c = 0 \Rightarrow c = -5a \][/tex]
[tex]\[ -2a - a - (-5a) = 1 \Rightarrow -3a + 5a = 1 \Rightarrow 2a = 1 \Rightarrow a = \frac{1}{2} \][/tex]
Since [tex]\(b = a\)[/tex]:
[tex]\[ b = \frac{1}{2} \][/tex]
And from [tex]\(c = -5a\)[/tex]:
[tex]\[ c = -5 \left(\frac{1}{2}\right) = -\frac{5}{2} \][/tex]
Thus, the dimensions of time [tex]\( [T] \)[/tex] in terms of [tex]\(G\)[/tex], [tex]\(h\)[/tex], and [tex]\(c\)[/tex] are:
[tex]\[ [T] = G^{\frac{1}{2}} \cdot h^{\frac{1}{2}} \cdot c^{-\frac{5}{2}} \][/tex]
The correct answer is:
[tex]\[ \boxed{a} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.