IDNLearn.com is your reliable source for expert answers and community insights. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
Sure, let's find [tex]\( f(x) \)[/tex] and [tex]\( f(0) \)[/tex] given the functional equation [tex]\( f(x+2) = 2x + 1 \)[/tex].
### Step-by-Step Solution:
1. Assume the Form of [tex]\( f(x) \)[/tex]:
We start by assuming that [tex]\( f(x) \)[/tex] is a linear function, since the given functional equation [tex]\( f(x+2) = 2x + 1 \)[/tex] suggests linearity. Let:
[tex]\[ f(x) = ax + b \][/tex]
2. Substitute [tex]\( x+2 \)[/tex] into the Assumed Form:
Substitute [tex]\( x + 2 \)[/tex] into the assumed form of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x+2) = a(x+2) + b \][/tex]
[tex]\[ f(x+2) = ax + 2a + b \][/tex]
3. Set Up the Equation Using the Given Functional Equation:
According to the problem statement, [tex]\( f(x+2) = 2x + 1 \)[/tex]. So, equate the two expressions for [tex]\( f(x+2) \)[/tex]:
[tex]\[ ax + 2a + b = 2x + 1 \][/tex]
4. Solve for [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
For the above equation to hold for all [tex]\( x \)[/tex], the coefficients of [tex]\( x \)[/tex] and the constant terms on both sides must be equal. Therefore, we get two separate equations:
[tex]\[ a = 2 \][/tex]
[tex]\[ 2a + b = 1 \][/tex]
Substitute [tex]\( a = 2 \)[/tex] into the second equation:
[tex]\[ 2(2) + b = 1 \][/tex]
[tex]\[ 4 + b = 1 \][/tex]
[tex]\[ b = 1 - 4 \][/tex]
[tex]\[ b = -3 \][/tex]
5. Formulate [tex]\( f(x) \)[/tex] Using the Values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
Now that we have [tex]\( a = 2 \)[/tex] and [tex]\( b = -3 \)[/tex], we can write:
[tex]\[ f(x) = 2x - 3 \][/tex]
6. Find [tex]\( f(0) \)[/tex]:
Finally, substitute [tex]\( x = 0 \)[/tex] into [tex]\( f(x) \)[/tex] to find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 2(0) - 3 \][/tex]
[tex]\[ f(0) = -3 \][/tex]
### Summary:
- The function [tex]\( f(x) \)[/tex] is [tex]\( 2x - 3 \)[/tex].
- The value of [tex]\( f(0) \)[/tex] is [tex]\( -3 \)[/tex].
Thus, [tex]\( f(x) = 2x - 3 \)[/tex] and [tex]\( f(0) = -3 \)[/tex].
### Step-by-Step Solution:
1. Assume the Form of [tex]\( f(x) \)[/tex]:
We start by assuming that [tex]\( f(x) \)[/tex] is a linear function, since the given functional equation [tex]\( f(x+2) = 2x + 1 \)[/tex] suggests linearity. Let:
[tex]\[ f(x) = ax + b \][/tex]
2. Substitute [tex]\( x+2 \)[/tex] into the Assumed Form:
Substitute [tex]\( x + 2 \)[/tex] into the assumed form of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x+2) = a(x+2) + b \][/tex]
[tex]\[ f(x+2) = ax + 2a + b \][/tex]
3. Set Up the Equation Using the Given Functional Equation:
According to the problem statement, [tex]\( f(x+2) = 2x + 1 \)[/tex]. So, equate the two expressions for [tex]\( f(x+2) \)[/tex]:
[tex]\[ ax + 2a + b = 2x + 1 \][/tex]
4. Solve for [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
For the above equation to hold for all [tex]\( x \)[/tex], the coefficients of [tex]\( x \)[/tex] and the constant terms on both sides must be equal. Therefore, we get two separate equations:
[tex]\[ a = 2 \][/tex]
[tex]\[ 2a + b = 1 \][/tex]
Substitute [tex]\( a = 2 \)[/tex] into the second equation:
[tex]\[ 2(2) + b = 1 \][/tex]
[tex]\[ 4 + b = 1 \][/tex]
[tex]\[ b = 1 - 4 \][/tex]
[tex]\[ b = -3 \][/tex]
5. Formulate [tex]\( f(x) \)[/tex] Using the Values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
Now that we have [tex]\( a = 2 \)[/tex] and [tex]\( b = -3 \)[/tex], we can write:
[tex]\[ f(x) = 2x - 3 \][/tex]
6. Find [tex]\( f(0) \)[/tex]:
Finally, substitute [tex]\( x = 0 \)[/tex] into [tex]\( f(x) \)[/tex] to find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 2(0) - 3 \][/tex]
[tex]\[ f(0) = -3 \][/tex]
### Summary:
- The function [tex]\( f(x) \)[/tex] is [tex]\( 2x - 3 \)[/tex].
- The value of [tex]\( f(0) \)[/tex] is [tex]\( -3 \)[/tex].
Thus, [tex]\( f(x) = 2x - 3 \)[/tex] and [tex]\( f(0) = -3 \)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.