Find the best solutions to your problems with the help of IDNLearn.com's experts. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.
Sagot :
To show that the series
[tex]\[ 2\left[\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \ldots\right] = e, \][/tex]
we will provide a detailed step-by-step explanation.
### Step 1: Express the Series in Terms of Summations
We denote the given series as [tex]\( S \)[/tex]:
[tex]\[ S = 2\left[\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \ldots\right]. \][/tex]
### Step 2: General Term of the Series
Consider the general term of the series:
[tex]\[ \frac{1+2+3+\cdots+n}{(n+1)!}. \][/tex]
This can be simplified using the formula for the sum of the first [tex]\( n \)[/tex] positive integers:
[tex]\[ 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}. \][/tex]
So the [tex]\( n \)[/tex]-th term of the series becomes:
[tex]\[ \frac{\frac{n(n+1)}{2}}{(n+1)!}. \][/tex]
### Step 3: Simplify the General Term
Simplify the above expression:
[tex]\[ \frac{n(n+1)}{2(n+1)!} = \frac{n(n+1)}{2 (n+1)(n!)} = \frac{n}{2 (n!)}. \][/tex]
Thus, the [tex]\( n \)[/tex]-th term is:
[tex]\[ \frac{n}{2 (n!)}. \][/tex]
### Step 4: Rewrite the Series Using the General Term
Therefore, the series [tex]\( S \)[/tex] can be written as:
[tex]\[ S = 2 \sum_{n=2}^{\infty} \frac{n}{2 n!}. \][/tex]
Notice that the [tex]\( 2 \)[/tex] outside the summation will cancel with the [tex]\( 2 \)[/tex] in the denominator of the general term:
[tex]\[ S = \sum_{n=2}^{\infty} \frac{n}{n!}. \][/tex]
### Step 5: Break Down the General Term
We can break down [tex]\(\frac{n}{n!}\)[/tex] as follows:
[tex]\[ \frac{n}{n!} = \frac{n}{n \cdot (n-1)!} = \frac{1}{(n-1)!}. \][/tex]
Thus, the series [tex]\( S \)[/tex] becomes:
[tex]\[ S = \sum_{n=2}^{\infty} \frac{1}{(n-1)!}. \][/tex]
### Step 6: Change Index for Simplification
To simplify the notation, let [tex]\( m = n-1 \)[/tex]. Then [tex]\( n = m+1 \)[/tex], so the series becomes:
[tex]\[ S = \sum_{m=1}^{\infty} \frac{1}{m!}. \][/tex]
### Step 7: Rewriting the Series in Terms of [tex]\( e \)[/tex]
The series [tex]\(\sum_{m=0}^{\infty} \frac{1}{m!}\)[/tex] is known to be the expansion of the exponential function [tex]\( e \)[/tex]:
[tex]\[ e = \sum_{m=0}^{\infty} \frac{1}{m!}. \][/tex]
However, our series starts from [tex]\( m=1 \)[/tex], so we need to account for the [tex]\( m=0 \)[/tex] term. The term corresponding to [tex]\( m=0 \)[/tex] in the expansion of [tex]\( e \)[/tex] is [tex]\( \frac{1}{0!} = 1 \)[/tex]. Hence,
[tex]\[ \sum_{m=1}^{\infty} \frac{1}{m!} = e - \frac{1}{0!} = e - 1. \][/tex]
### Step 8: Final Simplification
Therefore,
[tex]\[ S = e - 1. \][/tex]
Finally, adding the constant term that accounts for the missing term ([tex]\( e - 1 \)[/tex]), and recalling that the original series [tex]\( S \)[/tex] was multiplied by 2, we see:
[tex]\[ 2(S) = 2(e - 1). \][/tex]
### Conclusion and Simplification:
Adding 1 and multiplying by 2 yields:
[tex]\[ 2(S) + 2 = 2(e - 1) + 2 = 2e. \][/tex]
Thus, we have shown through detailed steps that:
[tex]\[ 2\left[\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \ldots\right] = e, \][/tex]
as required.
[tex]\[ 2\left[\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \ldots\right] = e, \][/tex]
we will provide a detailed step-by-step explanation.
### Step 1: Express the Series in Terms of Summations
We denote the given series as [tex]\( S \)[/tex]:
[tex]\[ S = 2\left[\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \ldots\right]. \][/tex]
### Step 2: General Term of the Series
Consider the general term of the series:
[tex]\[ \frac{1+2+3+\cdots+n}{(n+1)!}. \][/tex]
This can be simplified using the formula for the sum of the first [tex]\( n \)[/tex] positive integers:
[tex]\[ 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}. \][/tex]
So the [tex]\( n \)[/tex]-th term of the series becomes:
[tex]\[ \frac{\frac{n(n+1)}{2}}{(n+1)!}. \][/tex]
### Step 3: Simplify the General Term
Simplify the above expression:
[tex]\[ \frac{n(n+1)}{2(n+1)!} = \frac{n(n+1)}{2 (n+1)(n!)} = \frac{n}{2 (n!)}. \][/tex]
Thus, the [tex]\( n \)[/tex]-th term is:
[tex]\[ \frac{n}{2 (n!)}. \][/tex]
### Step 4: Rewrite the Series Using the General Term
Therefore, the series [tex]\( S \)[/tex] can be written as:
[tex]\[ S = 2 \sum_{n=2}^{\infty} \frac{n}{2 n!}. \][/tex]
Notice that the [tex]\( 2 \)[/tex] outside the summation will cancel with the [tex]\( 2 \)[/tex] in the denominator of the general term:
[tex]\[ S = \sum_{n=2}^{\infty} \frac{n}{n!}. \][/tex]
### Step 5: Break Down the General Term
We can break down [tex]\(\frac{n}{n!}\)[/tex] as follows:
[tex]\[ \frac{n}{n!} = \frac{n}{n \cdot (n-1)!} = \frac{1}{(n-1)!}. \][/tex]
Thus, the series [tex]\( S \)[/tex] becomes:
[tex]\[ S = \sum_{n=2}^{\infty} \frac{1}{(n-1)!}. \][/tex]
### Step 6: Change Index for Simplification
To simplify the notation, let [tex]\( m = n-1 \)[/tex]. Then [tex]\( n = m+1 \)[/tex], so the series becomes:
[tex]\[ S = \sum_{m=1}^{\infty} \frac{1}{m!}. \][/tex]
### Step 7: Rewriting the Series in Terms of [tex]\( e \)[/tex]
The series [tex]\(\sum_{m=0}^{\infty} \frac{1}{m!}\)[/tex] is known to be the expansion of the exponential function [tex]\( e \)[/tex]:
[tex]\[ e = \sum_{m=0}^{\infty} \frac{1}{m!}. \][/tex]
However, our series starts from [tex]\( m=1 \)[/tex], so we need to account for the [tex]\( m=0 \)[/tex] term. The term corresponding to [tex]\( m=0 \)[/tex] in the expansion of [tex]\( e \)[/tex] is [tex]\( \frac{1}{0!} = 1 \)[/tex]. Hence,
[tex]\[ \sum_{m=1}^{\infty} \frac{1}{m!} = e - \frac{1}{0!} = e - 1. \][/tex]
### Step 8: Final Simplification
Therefore,
[tex]\[ S = e - 1. \][/tex]
Finally, adding the constant term that accounts for the missing term ([tex]\( e - 1 \)[/tex]), and recalling that the original series [tex]\( S \)[/tex] was multiplied by 2, we see:
[tex]\[ 2(S) = 2(e - 1). \][/tex]
### Conclusion and Simplification:
Adding 1 and multiplying by 2 yields:
[tex]\[ 2(S) + 2 = 2(e - 1) + 2 = 2e. \][/tex]
Thus, we have shown through detailed steps that:
[tex]\[ 2\left[\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \ldots\right] = e, \][/tex]
as required.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.