Ask questions, share knowledge, and connect with a vibrant community on IDNLearn.com. Join our community to receive prompt, thorough responses from knowledgeable experts.
Sagot :
To find the [tex]\(x\)[/tex]-intercepts of the parabola defined by the equation [tex]\( y = 2x^2 - 8x + 6 \)[/tex], we need to determine the points where the graph of the equation crosses the [tex]\(x\)[/tex]-axis. These are the points where [tex]\( y = 0 \)[/tex].
Given the quadratic equation:
[tex]\[ y = 2x^2 - 8x + 6 \][/tex]
Setting [tex]\( y = 0 \)[/tex], we have:
[tex]\[ 0 = 2x^2 - 8x + 6 \][/tex]
We need to solve this quadratic equation for [tex]\( x \)[/tex]. The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. Here, [tex]\( a = 2 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = 6 \)[/tex].
To find the [tex]\(x\)[/tex]-intercepts, we use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = (-8)^2 - 4(2)(6) \][/tex]
Simplify the expression inside the square root:
[tex]\[ \text{Discriminant} = 64 - 48 = 16 \][/tex]
Now we can compute the two potential solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-(-8) + \sqrt{16}}{2(2)} = \frac{8 + 4}{4} = \frac{12}{4} = 3 \][/tex]
[tex]\[ x_2 = \frac{-(-8) - \sqrt{16}}{2(2)} = \frac{8 - 4}{4} = \frac{4}{4} = 1 \][/tex]
These solutions give us the [tex]\(x\)[/tex]-coordinates of the intercepts. Since [tex]\( y = 0 \)[/tex] at the [tex]\(x\)[/tex]-intercepts, the corresponding ordered pairs are:
[tex]\[ (3, 0) \quad \text{and} \quad (1, 0) \][/tex]
Hence, the [tex]\(x\)[/tex]-intercepts of the parabola [tex]\( y = 2x^2 - 8x + 6 \)[/tex] are:
[tex]\[ (3.0, 0), (1.0, 0) \][/tex]
Given the quadratic equation:
[tex]\[ y = 2x^2 - 8x + 6 \][/tex]
Setting [tex]\( y = 0 \)[/tex], we have:
[tex]\[ 0 = 2x^2 - 8x + 6 \][/tex]
We need to solve this quadratic equation for [tex]\( x \)[/tex]. The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex]. Here, [tex]\( a = 2 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = 6 \)[/tex].
To find the [tex]\(x\)[/tex]-intercepts, we use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = (-8)^2 - 4(2)(6) \][/tex]
Simplify the expression inside the square root:
[tex]\[ \text{Discriminant} = 64 - 48 = 16 \][/tex]
Now we can compute the two potential solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{-(-8) + \sqrt{16}}{2(2)} = \frac{8 + 4}{4} = \frac{12}{4} = 3 \][/tex]
[tex]\[ x_2 = \frac{-(-8) - \sqrt{16}}{2(2)} = \frac{8 - 4}{4} = \frac{4}{4} = 1 \][/tex]
These solutions give us the [tex]\(x\)[/tex]-coordinates of the intercepts. Since [tex]\( y = 0 \)[/tex] at the [tex]\(x\)[/tex]-intercepts, the corresponding ordered pairs are:
[tex]\[ (3, 0) \quad \text{and} \quad (1, 0) \][/tex]
Hence, the [tex]\(x\)[/tex]-intercepts of the parabola [tex]\( y = 2x^2 - 8x + 6 \)[/tex] are:
[tex]\[ (3.0, 0), (1.0, 0) \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.