Discover new knowledge and insights with IDNLearn.com's extensive Q&A database. Our Q&A platform offers detailed and trustworthy answers to ensure you have the information you need.
Sagot :
Let's solve this problem step by step to identify by what factor the orbital period increases if planet [tex]\( Y \)[/tex] is twice the mean distance from the sun as planet [tex]\( X \)[/tex].
### Step 1: Understanding the Relationship
The equation [tex]\( T^2 = A^3 \)[/tex] describes the relationship between the orbital period [tex]\( T \)[/tex] of a planet and its mean distance [tex]\( A \)[/tex] from the sun.
### Step 2: Relating the Distances
Given:
- Planet [tex]\( X \)[/tex] has a mean distance [tex]\( A_X \)[/tex] from the sun.
- Planet [tex]\( Y \)[/tex] has a mean distance [tex]\( A_Y \)[/tex] from the sun, where [tex]\( A_Y = 2A_X \)[/tex].
### Step 3: Determining the Orbital Periods
We need to find the orbital periods [tex]\( T_X \)[/tex] and [tex]\( T_Y \)[/tex] in terms of their mean distances:
- For planet [tex]\( X \)[/tex], we have:
[tex]\[ T_X^2 = A_X^3 \][/tex]
- For planet [tex]\( Y \)[/tex], since [tex]\( A_Y = 2A_X \)[/tex], the relationship becomes:
[tex]\[ T_Y^2 = (2A_X)^3 = 8A_X^3 \][/tex]
### Step 4: Solving for the Orbital Period of Planet [tex]\( Y \)[/tex]
Using the equation above:
[tex]\[ T_Y^2 = 8A_X^3 \][/tex]
To find [tex]\( T_Y \)[/tex], take the square root of both sides:
[tex]\[ T_Y = \sqrt{8A_X^3} \][/tex]
Rewrite [tex]\( 8 \)[/tex] as [tex]\( 2^3 \)[/tex]:
[tex]\[ T_Y = \sqrt{2^3 \cdot A_X^3} \][/tex]
Separating the terms under the square root:
[tex]\[ T_Y = \sqrt{2^3} \cdot \sqrt{A_X^3} \][/tex]
Since [tex]\( \sqrt{2^3} = (2^3)^{\frac{1}{2}} \)[/tex]:
[tex]\[ \sqrt{2^3} = 2^{\frac{3}{2}} \][/tex]
And [tex]\( \sqrt{A_X^3} = A_X^{3/2} \)[/tex]:
[tex]\[ T_Y = 2^{\frac{3}{2}} \cdot A_X^{\frac{3}{2}} \][/tex]
### Step 5: Comparing [tex]\( T_Y \)[/tex] to [tex]\( T_X \)[/tex]
Recall that [tex]\( T_X = A_X^{\frac{3}{2}} \)[/tex]. To express [tex]\( T_Y \)[/tex] in terms of [tex]\( T_X \)[/tex], we get:
[tex]\[ T_Y = 2^{\frac{3}{2}} \cdot T_X \][/tex]
### Step 6: Conclusion
The orbital period [tex]\( T_Y \)[/tex] is increased by a factor of [tex]\( 2^{\frac{3}{2}} \)[/tex] compared to [tex]\( T_X \)[/tex]. Thus, the correct answer is:
[tex]\[ 2^{\frac{3}{2}} \][/tex]
So, by what factor is the orbital period increased?
[tex]\[ \boxed{2^{\frac{3}{2}}} \][/tex]
### Step 1: Understanding the Relationship
The equation [tex]\( T^2 = A^3 \)[/tex] describes the relationship between the orbital period [tex]\( T \)[/tex] of a planet and its mean distance [tex]\( A \)[/tex] from the sun.
### Step 2: Relating the Distances
Given:
- Planet [tex]\( X \)[/tex] has a mean distance [tex]\( A_X \)[/tex] from the sun.
- Planet [tex]\( Y \)[/tex] has a mean distance [tex]\( A_Y \)[/tex] from the sun, where [tex]\( A_Y = 2A_X \)[/tex].
### Step 3: Determining the Orbital Periods
We need to find the orbital periods [tex]\( T_X \)[/tex] and [tex]\( T_Y \)[/tex] in terms of their mean distances:
- For planet [tex]\( X \)[/tex], we have:
[tex]\[ T_X^2 = A_X^3 \][/tex]
- For planet [tex]\( Y \)[/tex], since [tex]\( A_Y = 2A_X \)[/tex], the relationship becomes:
[tex]\[ T_Y^2 = (2A_X)^3 = 8A_X^3 \][/tex]
### Step 4: Solving for the Orbital Period of Planet [tex]\( Y \)[/tex]
Using the equation above:
[tex]\[ T_Y^2 = 8A_X^3 \][/tex]
To find [tex]\( T_Y \)[/tex], take the square root of both sides:
[tex]\[ T_Y = \sqrt{8A_X^3} \][/tex]
Rewrite [tex]\( 8 \)[/tex] as [tex]\( 2^3 \)[/tex]:
[tex]\[ T_Y = \sqrt{2^3 \cdot A_X^3} \][/tex]
Separating the terms under the square root:
[tex]\[ T_Y = \sqrt{2^3} \cdot \sqrt{A_X^3} \][/tex]
Since [tex]\( \sqrt{2^3} = (2^3)^{\frac{1}{2}} \)[/tex]:
[tex]\[ \sqrt{2^3} = 2^{\frac{3}{2}} \][/tex]
And [tex]\( \sqrt{A_X^3} = A_X^{3/2} \)[/tex]:
[tex]\[ T_Y = 2^{\frac{3}{2}} \cdot A_X^{\frac{3}{2}} \][/tex]
### Step 5: Comparing [tex]\( T_Y \)[/tex] to [tex]\( T_X \)[/tex]
Recall that [tex]\( T_X = A_X^{\frac{3}{2}} \)[/tex]. To express [tex]\( T_Y \)[/tex] in terms of [tex]\( T_X \)[/tex], we get:
[tex]\[ T_Y = 2^{\frac{3}{2}} \cdot T_X \][/tex]
### Step 6: Conclusion
The orbital period [tex]\( T_Y \)[/tex] is increased by a factor of [tex]\( 2^{\frac{3}{2}} \)[/tex] compared to [tex]\( T_X \)[/tex]. Thus, the correct answer is:
[tex]\[ 2^{\frac{3}{2}} \][/tex]
So, by what factor is the orbital period increased?
[tex]\[ \boxed{2^{\frac{3}{2}}} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.