Join the IDNLearn.com community and get your questions answered by knowledgeable individuals. Discover detailed answers to your questions with our extensive database of expert knowledge.
Sagot :
Let's solve this problem step by step to identify by what factor the orbital period increases if planet [tex]\( Y \)[/tex] is twice the mean distance from the sun as planet [tex]\( X \)[/tex].
### Step 1: Understanding the Relationship
The equation [tex]\( T^2 = A^3 \)[/tex] describes the relationship between the orbital period [tex]\( T \)[/tex] of a planet and its mean distance [tex]\( A \)[/tex] from the sun.
### Step 2: Relating the Distances
Given:
- Planet [tex]\( X \)[/tex] has a mean distance [tex]\( A_X \)[/tex] from the sun.
- Planet [tex]\( Y \)[/tex] has a mean distance [tex]\( A_Y \)[/tex] from the sun, where [tex]\( A_Y = 2A_X \)[/tex].
### Step 3: Determining the Orbital Periods
We need to find the orbital periods [tex]\( T_X \)[/tex] and [tex]\( T_Y \)[/tex] in terms of their mean distances:
- For planet [tex]\( X \)[/tex], we have:
[tex]\[ T_X^2 = A_X^3 \][/tex]
- For planet [tex]\( Y \)[/tex], since [tex]\( A_Y = 2A_X \)[/tex], the relationship becomes:
[tex]\[ T_Y^2 = (2A_X)^3 = 8A_X^3 \][/tex]
### Step 4: Solving for the Orbital Period of Planet [tex]\( Y \)[/tex]
Using the equation above:
[tex]\[ T_Y^2 = 8A_X^3 \][/tex]
To find [tex]\( T_Y \)[/tex], take the square root of both sides:
[tex]\[ T_Y = \sqrt{8A_X^3} \][/tex]
Rewrite [tex]\( 8 \)[/tex] as [tex]\( 2^3 \)[/tex]:
[tex]\[ T_Y = \sqrt{2^3 \cdot A_X^3} \][/tex]
Separating the terms under the square root:
[tex]\[ T_Y = \sqrt{2^3} \cdot \sqrt{A_X^3} \][/tex]
Since [tex]\( \sqrt{2^3} = (2^3)^{\frac{1}{2}} \)[/tex]:
[tex]\[ \sqrt{2^3} = 2^{\frac{3}{2}} \][/tex]
And [tex]\( \sqrt{A_X^3} = A_X^{3/2} \)[/tex]:
[tex]\[ T_Y = 2^{\frac{3}{2}} \cdot A_X^{\frac{3}{2}} \][/tex]
### Step 5: Comparing [tex]\( T_Y \)[/tex] to [tex]\( T_X \)[/tex]
Recall that [tex]\( T_X = A_X^{\frac{3}{2}} \)[/tex]. To express [tex]\( T_Y \)[/tex] in terms of [tex]\( T_X \)[/tex], we get:
[tex]\[ T_Y = 2^{\frac{3}{2}} \cdot T_X \][/tex]
### Step 6: Conclusion
The orbital period [tex]\( T_Y \)[/tex] is increased by a factor of [tex]\( 2^{\frac{3}{2}} \)[/tex] compared to [tex]\( T_X \)[/tex]. Thus, the correct answer is:
[tex]\[ 2^{\frac{3}{2}} \][/tex]
So, by what factor is the orbital period increased?
[tex]\[ \boxed{2^{\frac{3}{2}}} \][/tex]
### Step 1: Understanding the Relationship
The equation [tex]\( T^2 = A^3 \)[/tex] describes the relationship between the orbital period [tex]\( T \)[/tex] of a planet and its mean distance [tex]\( A \)[/tex] from the sun.
### Step 2: Relating the Distances
Given:
- Planet [tex]\( X \)[/tex] has a mean distance [tex]\( A_X \)[/tex] from the sun.
- Planet [tex]\( Y \)[/tex] has a mean distance [tex]\( A_Y \)[/tex] from the sun, where [tex]\( A_Y = 2A_X \)[/tex].
### Step 3: Determining the Orbital Periods
We need to find the orbital periods [tex]\( T_X \)[/tex] and [tex]\( T_Y \)[/tex] in terms of their mean distances:
- For planet [tex]\( X \)[/tex], we have:
[tex]\[ T_X^2 = A_X^3 \][/tex]
- For planet [tex]\( Y \)[/tex], since [tex]\( A_Y = 2A_X \)[/tex], the relationship becomes:
[tex]\[ T_Y^2 = (2A_X)^3 = 8A_X^3 \][/tex]
### Step 4: Solving for the Orbital Period of Planet [tex]\( Y \)[/tex]
Using the equation above:
[tex]\[ T_Y^2 = 8A_X^3 \][/tex]
To find [tex]\( T_Y \)[/tex], take the square root of both sides:
[tex]\[ T_Y = \sqrt{8A_X^3} \][/tex]
Rewrite [tex]\( 8 \)[/tex] as [tex]\( 2^3 \)[/tex]:
[tex]\[ T_Y = \sqrt{2^3 \cdot A_X^3} \][/tex]
Separating the terms under the square root:
[tex]\[ T_Y = \sqrt{2^3} \cdot \sqrt{A_X^3} \][/tex]
Since [tex]\( \sqrt{2^3} = (2^3)^{\frac{1}{2}} \)[/tex]:
[tex]\[ \sqrt{2^3} = 2^{\frac{3}{2}} \][/tex]
And [tex]\( \sqrt{A_X^3} = A_X^{3/2} \)[/tex]:
[tex]\[ T_Y = 2^{\frac{3}{2}} \cdot A_X^{\frac{3}{2}} \][/tex]
### Step 5: Comparing [tex]\( T_Y \)[/tex] to [tex]\( T_X \)[/tex]
Recall that [tex]\( T_X = A_X^{\frac{3}{2}} \)[/tex]. To express [tex]\( T_Y \)[/tex] in terms of [tex]\( T_X \)[/tex], we get:
[tex]\[ T_Y = 2^{\frac{3}{2}} \cdot T_X \][/tex]
### Step 6: Conclusion
The orbital period [tex]\( T_Y \)[/tex] is increased by a factor of [tex]\( 2^{\frac{3}{2}} \)[/tex] compared to [tex]\( T_X \)[/tex]. Thus, the correct answer is:
[tex]\[ 2^{\frac{3}{2}} \][/tex]
So, by what factor is the orbital period increased?
[tex]\[ \boxed{2^{\frac{3}{2}}} \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.