Expand your horizons with the diverse and informative answers found on IDNLearn.com. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.
Sagot :
Let's solve each part of the question step by step.
### (a) Continuous Rate of Growth
The continuous rate of growth for an exponential function of the form [tex]\( n(t) = n_0 e^{rt} \)[/tex] is given by the exponent [tex]\( r \)[/tex], expressed as a percentage. In this case, the given exponential function is [tex]\( n(t) = 930 e^{0.1t} \)[/tex]. Here, [tex]\( r = 0.1 \)[/tex].
To convert the continuous rate of growth to a percentage, multiply [tex]\( r \)[/tex] by 100:
[tex]\[ \text{Continuous rate of growth} = 0.1 \times 100 = 10.0\% \][/tex]
### Answer:
[tex]\[ \boxed{10.0} \text{ percent} \][/tex]
### (b) Initial Population
The initial population [tex]\( n(0) \)[/tex] is the value of the function at [tex]\( t = 0 \)[/tex]. This is given by:
[tex]\[ n(0) = 930 e^{0.1 \cdot 0} = 930 e^0 = 930 \][/tex]
### Answer:
[tex]\[ \boxed{930} \][/tex]
### (c) Population at [tex]\( t = 5 \)[/tex]
To determine the population of bacteria at [tex]\( t = 5 \)[/tex], substitute [tex]\( t = 5 \)[/tex] into the given function:
[tex]\[ n(5) = 930 e^{0.1 \cdot 5} \][/tex]
Compute the exponent first:
[tex]\[ 0.1 \cdot 5 = 0.5 \][/tex]
So,
[tex]\[ n(5) = 930 e^{0.5} \][/tex]
Using the numerical value of [tex]\( e^{0.5} \approx 1.64872 \)[/tex]:
[tex]\[ n(5) = 930 \times 1.64872 \approx 1533.31 \][/tex]
Rounding to the nearest whole number gives:
[tex]\[ n(5) \approx 1533 \][/tex]
### Answer:
[tex]\[ \boxed{1533} \][/tex]
In summary:
- (a) The continuous rate of growth is [tex]\( \boxed{10.0} \)[/tex] percent.
- (b) The initial population is [tex]\( \boxed{930} \)[/tex].
- (c) The population at [tex]\( t = 5 \)[/tex] is [tex]\( \boxed{1533} \)[/tex] bacteria (rounded to the nearest bacteria).
### (a) Continuous Rate of Growth
The continuous rate of growth for an exponential function of the form [tex]\( n(t) = n_0 e^{rt} \)[/tex] is given by the exponent [tex]\( r \)[/tex], expressed as a percentage. In this case, the given exponential function is [tex]\( n(t) = 930 e^{0.1t} \)[/tex]. Here, [tex]\( r = 0.1 \)[/tex].
To convert the continuous rate of growth to a percentage, multiply [tex]\( r \)[/tex] by 100:
[tex]\[ \text{Continuous rate of growth} = 0.1 \times 100 = 10.0\% \][/tex]
### Answer:
[tex]\[ \boxed{10.0} \text{ percent} \][/tex]
### (b) Initial Population
The initial population [tex]\( n(0) \)[/tex] is the value of the function at [tex]\( t = 0 \)[/tex]. This is given by:
[tex]\[ n(0) = 930 e^{0.1 \cdot 0} = 930 e^0 = 930 \][/tex]
### Answer:
[tex]\[ \boxed{930} \][/tex]
### (c) Population at [tex]\( t = 5 \)[/tex]
To determine the population of bacteria at [tex]\( t = 5 \)[/tex], substitute [tex]\( t = 5 \)[/tex] into the given function:
[tex]\[ n(5) = 930 e^{0.1 \cdot 5} \][/tex]
Compute the exponent first:
[tex]\[ 0.1 \cdot 5 = 0.5 \][/tex]
So,
[tex]\[ n(5) = 930 e^{0.5} \][/tex]
Using the numerical value of [tex]\( e^{0.5} \approx 1.64872 \)[/tex]:
[tex]\[ n(5) = 930 \times 1.64872 \approx 1533.31 \][/tex]
Rounding to the nearest whole number gives:
[tex]\[ n(5) \approx 1533 \][/tex]
### Answer:
[tex]\[ \boxed{1533} \][/tex]
In summary:
- (a) The continuous rate of growth is [tex]\( \boxed{10.0} \)[/tex] percent.
- (b) The initial population is [tex]\( \boxed{930} \)[/tex].
- (c) The population at [tex]\( t = 5 \)[/tex] is [tex]\( \boxed{1533} \)[/tex] bacteria (rounded to the nearest bacteria).
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.