IDNLearn.com: Your one-stop platform for getting reliable answers to any question. Join our knowledgeable community and get detailed, reliable answers to all your questions.
Sagot :
Let's solve each equation step-by-step:
### Part (a)
[tex]\[ 1 = \frac{\square}{9} \][/tex]
We need to solve for the blank (let's denote it as [tex]\( x \)[/tex]):
[tex]\[ 1 = \frac{x}{9} \][/tex]
Multiply both sides by 9 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = 1 \times 9 \][/tex]
[tex]\[ x = 9 \][/tex]
So, the blank in part (a) should be 9.
### Part (b)
[tex]\[ 1 = \frac{20}{\square} \][/tex]
We need to solve for the blank (let's denote it as [tex]\( y \)[/tex]):
[tex]\[ 1 = \frac{20}{y} \][/tex]
Multiply both sides by [tex]\( y \)[/tex] to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 20 \][/tex]
So, the blank in part (b) should be 20.
### Part (c)
[tex]\[ \frac{2}{5} + \frac{\square}{5} = 1 \][/tex]
We need to solve for the blank (let's denote it as [tex]\( z \)[/tex]):
[tex]\[ \frac{2}{5} + \frac{z}{5} = 1 \][/tex]
Multiply both sides by 5 to clear the denominators:
[tex]\[ 2 + z = 5 \][/tex]
Subtract 2 from both sides to isolate [tex]\( z \)[/tex]:
[tex]\[ z = 5 - 2 \][/tex]
[tex]\[ z = 3 \][/tex]
So, the blank in part (c) should be 3.
### Part (d)
[tex]\[ \frac{3}{\square} + \frac{4}{7} = 1 \][/tex]
We need to solve for the blank (let's denote it as [tex]\( w \)[/tex]):
[tex]\[ \frac{3}{w} + \frac{4}{7} = 1 \][/tex]
Subtract [tex]\( \frac{4}{7} \)[/tex] from both sides:
[tex]\[ \frac{3}{w} = 1 - \frac{4}{7} \][/tex]
Convert 1 to a fraction with a denominator of 7:
[tex]\[ \frac{3}{w} = \frac{7}{7} - \frac{4}{7} \][/tex]
Subtract the fractions:
[tex]\[ \frac{3}{w} = \frac{3}{7} \][/tex]
Set the numerators equal since the denominators are the same:
[tex]\[ 3 = \frac{3w}{7} \][/tex]
Multiply both sides by 7 to isolate [tex]\( w \)[/tex]:
[tex]\[ 21 = 3w \][/tex]
Divide both sides by 3:
[tex]\[ w = \frac{21}{3} \][/tex]
[tex]\[ w = 7 \][/tex]
So, the blank in part (d) should be 7.
### Part (e)
[tex]\[ \frac{11}{\square} + \frac{\square}{20} = 1 \][/tex]
We need to solve for the blank (let's denote it as [tex]\( u \)[/tex]):
[tex]\[ \frac{11}{u} + \frac{u}{20} = 1 \][/tex]
Clear the fractions by multiplying every term by [tex]\( 20u \)[/tex]:
[tex]\[ 20u \cdot \frac{11}{u} + 20u \cdot \frac{u}{20} = 20u \cdot 1 \][/tex]
[tex]\[ 20 \cdot 11 + u^2 = 20u \][/tex]
[tex]\[ 220 + u^2 = 20u \][/tex]
Rearrange this into a standard quadratic equation:
[tex]\[ u^2 - 20u + 220 = 0 \][/tex]
Solve this quadratic using the quadratic formula [tex]\( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -20 \)[/tex], and [tex]\( c = 220 \)[/tex],
[tex]\[ u = \frac{20 \pm \sqrt{20^2 - 4 \cdot 1 \cdot 220}}{2 \cdot 1} \][/tex]
[tex]\[ u = \frac{20 \pm \sqrt{400 - 880}}{2} \][/tex]
[tex]\[ u = \frac{20 \pm \sqrt{-480}}{2} \][/tex]
Since the quadratic involves a negative under the square root, it has complex roots, but we will take the positive real part.
[tex]\[ u = \frac{20 \pm i\sqrt{480}}{2} \][/tex]
[tex]\[ u \approx 2(\frac{10 \pm i\sqrt{120}}{1}) \approx 10 + i\sqrt{120}/2 10 - i\sqrt{15}/2] Therefore we'll go with positive 20/ratio as the most straightforward root. Thus, the blank in part (e) should be 10 or un resulnant based on the quadratic) ### Part (f) \[ \frac{\square}{\square} + \frac{3}{15} = 1 \][/tex]
We need to solve for the two blanks (let's denote them as [tex]\( x \)[/tex] and [tex]\( y \)[/tex]):
[tex]\[ \frac{x}{y} + \frac{3}{15} = 1 \][/tex]
Subtract [tex]\( \frac{3}{15} \)[/tex] from both sides:
[tex]\[ \frac{x}{y} = 1 - \frac{3}{15} \][/tex]
Convert 1 to a fraction with a denominator of 15:
[tex]\[ \frac{x}{y} = \frac{15}{15} - \frac{3}{15} \][/tex]
Subtract the fractions:
[tex]\[ \frac{x}{y} = \frac{12}{15} \][/tex]
So, the ratio [tex]\( \frac{x}{y} \)[/tex] must be [tex]\( \frac{12}{15} \)[/tex]. We can choose:
[tex]\[ x = 12 \][/tex]
[tex]\[ y = 15 \][/tex]
So, the blanks in part (f) should be 12 and 15, respectively.
### Part (a)
[tex]\[ 1 = \frac{\square}{9} \][/tex]
We need to solve for the blank (let's denote it as [tex]\( x \)[/tex]):
[tex]\[ 1 = \frac{x}{9} \][/tex]
Multiply both sides by 9 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = 1 \times 9 \][/tex]
[tex]\[ x = 9 \][/tex]
So, the blank in part (a) should be 9.
### Part (b)
[tex]\[ 1 = \frac{20}{\square} \][/tex]
We need to solve for the blank (let's denote it as [tex]\( y \)[/tex]):
[tex]\[ 1 = \frac{20}{y} \][/tex]
Multiply both sides by [tex]\( y \)[/tex] to isolate [tex]\( y \)[/tex]:
[tex]\[ y = 20 \][/tex]
So, the blank in part (b) should be 20.
### Part (c)
[tex]\[ \frac{2}{5} + \frac{\square}{5} = 1 \][/tex]
We need to solve for the blank (let's denote it as [tex]\( z \)[/tex]):
[tex]\[ \frac{2}{5} + \frac{z}{5} = 1 \][/tex]
Multiply both sides by 5 to clear the denominators:
[tex]\[ 2 + z = 5 \][/tex]
Subtract 2 from both sides to isolate [tex]\( z \)[/tex]:
[tex]\[ z = 5 - 2 \][/tex]
[tex]\[ z = 3 \][/tex]
So, the blank in part (c) should be 3.
### Part (d)
[tex]\[ \frac{3}{\square} + \frac{4}{7} = 1 \][/tex]
We need to solve for the blank (let's denote it as [tex]\( w \)[/tex]):
[tex]\[ \frac{3}{w} + \frac{4}{7} = 1 \][/tex]
Subtract [tex]\( \frac{4}{7} \)[/tex] from both sides:
[tex]\[ \frac{3}{w} = 1 - \frac{4}{7} \][/tex]
Convert 1 to a fraction with a denominator of 7:
[tex]\[ \frac{3}{w} = \frac{7}{7} - \frac{4}{7} \][/tex]
Subtract the fractions:
[tex]\[ \frac{3}{w} = \frac{3}{7} \][/tex]
Set the numerators equal since the denominators are the same:
[tex]\[ 3 = \frac{3w}{7} \][/tex]
Multiply both sides by 7 to isolate [tex]\( w \)[/tex]:
[tex]\[ 21 = 3w \][/tex]
Divide both sides by 3:
[tex]\[ w = \frac{21}{3} \][/tex]
[tex]\[ w = 7 \][/tex]
So, the blank in part (d) should be 7.
### Part (e)
[tex]\[ \frac{11}{\square} + \frac{\square}{20} = 1 \][/tex]
We need to solve for the blank (let's denote it as [tex]\( u \)[/tex]):
[tex]\[ \frac{11}{u} + \frac{u}{20} = 1 \][/tex]
Clear the fractions by multiplying every term by [tex]\( 20u \)[/tex]:
[tex]\[ 20u \cdot \frac{11}{u} + 20u \cdot \frac{u}{20} = 20u \cdot 1 \][/tex]
[tex]\[ 20 \cdot 11 + u^2 = 20u \][/tex]
[tex]\[ 220 + u^2 = 20u \][/tex]
Rearrange this into a standard quadratic equation:
[tex]\[ u^2 - 20u + 220 = 0 \][/tex]
Solve this quadratic using the quadratic formula [tex]\( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -20 \)[/tex], and [tex]\( c = 220 \)[/tex],
[tex]\[ u = \frac{20 \pm \sqrt{20^2 - 4 \cdot 1 \cdot 220}}{2 \cdot 1} \][/tex]
[tex]\[ u = \frac{20 \pm \sqrt{400 - 880}}{2} \][/tex]
[tex]\[ u = \frac{20 \pm \sqrt{-480}}{2} \][/tex]
Since the quadratic involves a negative under the square root, it has complex roots, but we will take the positive real part.
[tex]\[ u = \frac{20 \pm i\sqrt{480}}{2} \][/tex]
[tex]\[ u \approx 2(\frac{10 \pm i\sqrt{120}}{1}) \approx 10 + i\sqrt{120}/2 10 - i\sqrt{15}/2] Therefore we'll go with positive 20/ratio as the most straightforward root. Thus, the blank in part (e) should be 10 or un resulnant based on the quadratic) ### Part (f) \[ \frac{\square}{\square} + \frac{3}{15} = 1 \][/tex]
We need to solve for the two blanks (let's denote them as [tex]\( x \)[/tex] and [tex]\( y \)[/tex]):
[tex]\[ \frac{x}{y} + \frac{3}{15} = 1 \][/tex]
Subtract [tex]\( \frac{3}{15} \)[/tex] from both sides:
[tex]\[ \frac{x}{y} = 1 - \frac{3}{15} \][/tex]
Convert 1 to a fraction with a denominator of 15:
[tex]\[ \frac{x}{y} = \frac{15}{15} - \frac{3}{15} \][/tex]
Subtract the fractions:
[tex]\[ \frac{x}{y} = \frac{12}{15} \][/tex]
So, the ratio [tex]\( \frac{x}{y} \)[/tex] must be [tex]\( \frac{12}{15} \)[/tex]. We can choose:
[tex]\[ x = 12 \][/tex]
[tex]\[ y = 15 \][/tex]
So, the blanks in part (f) should be 12 and 15, respectively.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.