Get expert insights and community-driven knowledge on IDNLearn.com. Our Q&A platform offers reliable and thorough answers to ensure you have the information you need to succeed in any situation.
Sagot :
Let's solve each part of the problem step-by-step, keeping in mind the given answers.
### Part 1: Work Done in Isothermal Compression
1. Given Parameters:
- Mass of Oxygen ([tex]\(O_2\)[/tex]): [tex]\(16.0 \, \text{g}\)[/tex]
- Initial Temperature ([tex]\(T\)[/tex]): [tex]\(100^{\circ} \text{C}\)[/tex] which is [tex]\(373.15 \, \text{K}\)[/tex]
- Universal Gas Constant ([tex]\(R\)[/tex]): [tex]\(8.314 \, \text{J/(mol·K)}\)[/tex]
- Initial and Final Volumes: Final Volume is half of Initial Volume
2. Molar Mass of [tex]\(O_2\)[/tex]:
The molar mass of [tex]\(O_2\)[/tex] is [tex]\(32 \, \text{g/mol}\)[/tex].
3. Number of Moles ([tex]\(n\)[/tex]):
[tex]\[ n = \frac{\text{mass of } O_2}{\text{molar mass of } O_2} = \frac{16.0 \, \text{g}}{32 \, \text{g/mol}} = 0.5 \, \text{moles} \][/tex]
4. Work Done in Isothermal Compression:
The work done in an isothermal process is given by the formula:
[tex]\[ W = nRT \ln \left( \frac{V_{\text{initial}}}{V_{\text{final}}} \right) \][/tex]
Given that the volume is halved:
[tex]\[ \frac{V_{\text{initial}}}{V_{\text{final}}} = 2 \][/tex]
Therefore:
[tex]\[ W = 0.5 \times 8.314 \times 373.15 \times \ln(2) \approx 1074 \, \text{J} \][/tex]
### Part 2: Final Volume in Isobaric Expansion
1. Given Parameters:
- Pressure ([tex]\(P\)[/tex]): [tex]\(1000 \, \text{Pa}\)[/tex]
- Initial Volume ([tex]\(V_{\text{initial}}\)[/tex]): [tex]\(8 \, \text{m}^3\)[/tex]
- Work Done ([tex]\(W\)[/tex]): [tex]\(20 \, \text{KJ} = 20000 \, \text{J}\)[/tex]
2. Work Done in Isobaric Process:
The work done in an isobaric process is given by:
[tex]\[ W = P \times (V_{\text{final}} - V_{\text{initial}}) \][/tex]
3. Calculating Final Volume ([tex]\(V_{\text{final}}\)[/tex]):
[tex]\[ 20000 \, \text{J} = 1000 \, \text{Pa} \times (V_{\text{final}} - 8 \, \text{m}^3) \][/tex]
[tex]\[ V_{\text{final}} - 8 \, \text{m}^3 = \frac{20000 \, \text{J}}{1000 \, \text{Pa}} = 20 \, \text{m}^3 \][/tex]
[tex]\[ V_{\text{final}} = 20 \, \text{m}^3 + 8 \, \text{m}^3 = 28 \, \text{m}^3 \][/tex]
### Part 3: Work Done in Compression
1. Given Parameters:
- Heat Given Off: [tex]\(4000 \, \text{J}\)[/tex] (or [tex]\(4 \, \text{KJ}\)[/tex])
- Pressure ([tex]\(P\)[/tex]): [tex]\(1000 \, \text{Pa}\)[/tex]
- Initial Volume ([tex]\(V_{\text{initial}}\)[/tex]): [tex]\(0.08 \, \text{m}^3\)[/tex]
- Final Volume ([tex]\(V_{\text{final}}\)[/tex]): [tex]\(0.05 \, \text{m}^3\)[/tex]
2. Work Done in Isobaric Compression:
[tex]\[ W = P \times (V_{\text{initial}} - V_{\text{final}}) \][/tex]
3. Calculating Work Done:
[tex]\[ W = 1000 \, \text{Pa} \times (0.08 \, \text{m}^3 - 0.05 \, \text{m}^3) = 1000 \, \text{Pa} \times 0.03 \, \text{m}^3 = 30 \, \text{J} \][/tex]
### Summary of Results:
1. Work done to compress the gas (isothermal): [tex]\(1074 \, \text{J}\)[/tex]
2. Final volume after isobaric expansion: [tex]\(28 \, \text{m}^3\)[/tex]
3. Work done during compression: [tex]\(30 \, \text{J}\)[/tex]
### Part 1: Work Done in Isothermal Compression
1. Given Parameters:
- Mass of Oxygen ([tex]\(O_2\)[/tex]): [tex]\(16.0 \, \text{g}\)[/tex]
- Initial Temperature ([tex]\(T\)[/tex]): [tex]\(100^{\circ} \text{C}\)[/tex] which is [tex]\(373.15 \, \text{K}\)[/tex]
- Universal Gas Constant ([tex]\(R\)[/tex]): [tex]\(8.314 \, \text{J/(mol·K)}\)[/tex]
- Initial and Final Volumes: Final Volume is half of Initial Volume
2. Molar Mass of [tex]\(O_2\)[/tex]:
The molar mass of [tex]\(O_2\)[/tex] is [tex]\(32 \, \text{g/mol}\)[/tex].
3. Number of Moles ([tex]\(n\)[/tex]):
[tex]\[ n = \frac{\text{mass of } O_2}{\text{molar mass of } O_2} = \frac{16.0 \, \text{g}}{32 \, \text{g/mol}} = 0.5 \, \text{moles} \][/tex]
4. Work Done in Isothermal Compression:
The work done in an isothermal process is given by the formula:
[tex]\[ W = nRT \ln \left( \frac{V_{\text{initial}}}{V_{\text{final}}} \right) \][/tex]
Given that the volume is halved:
[tex]\[ \frac{V_{\text{initial}}}{V_{\text{final}}} = 2 \][/tex]
Therefore:
[tex]\[ W = 0.5 \times 8.314 \times 373.15 \times \ln(2) \approx 1074 \, \text{J} \][/tex]
### Part 2: Final Volume in Isobaric Expansion
1. Given Parameters:
- Pressure ([tex]\(P\)[/tex]): [tex]\(1000 \, \text{Pa}\)[/tex]
- Initial Volume ([tex]\(V_{\text{initial}}\)[/tex]): [tex]\(8 \, \text{m}^3\)[/tex]
- Work Done ([tex]\(W\)[/tex]): [tex]\(20 \, \text{KJ} = 20000 \, \text{J}\)[/tex]
2. Work Done in Isobaric Process:
The work done in an isobaric process is given by:
[tex]\[ W = P \times (V_{\text{final}} - V_{\text{initial}}) \][/tex]
3. Calculating Final Volume ([tex]\(V_{\text{final}}\)[/tex]):
[tex]\[ 20000 \, \text{J} = 1000 \, \text{Pa} \times (V_{\text{final}} - 8 \, \text{m}^3) \][/tex]
[tex]\[ V_{\text{final}} - 8 \, \text{m}^3 = \frac{20000 \, \text{J}}{1000 \, \text{Pa}} = 20 \, \text{m}^3 \][/tex]
[tex]\[ V_{\text{final}} = 20 \, \text{m}^3 + 8 \, \text{m}^3 = 28 \, \text{m}^3 \][/tex]
### Part 3: Work Done in Compression
1. Given Parameters:
- Heat Given Off: [tex]\(4000 \, \text{J}\)[/tex] (or [tex]\(4 \, \text{KJ}\)[/tex])
- Pressure ([tex]\(P\)[/tex]): [tex]\(1000 \, \text{Pa}\)[/tex]
- Initial Volume ([tex]\(V_{\text{initial}}\)[/tex]): [tex]\(0.08 \, \text{m}^3\)[/tex]
- Final Volume ([tex]\(V_{\text{final}}\)[/tex]): [tex]\(0.05 \, \text{m}^3\)[/tex]
2. Work Done in Isobaric Compression:
[tex]\[ W = P \times (V_{\text{initial}} - V_{\text{final}}) \][/tex]
3. Calculating Work Done:
[tex]\[ W = 1000 \, \text{Pa} \times (0.08 \, \text{m}^3 - 0.05 \, \text{m}^3) = 1000 \, \text{Pa} \times 0.03 \, \text{m}^3 = 30 \, \text{J} \][/tex]
### Summary of Results:
1. Work done to compress the gas (isothermal): [tex]\(1074 \, \text{J}\)[/tex]
2. Final volume after isobaric expansion: [tex]\(28 \, \text{m}^3\)[/tex]
3. Work done during compression: [tex]\(30 \, \text{J}\)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.