Explore a wide range of topics and get answers from experts on IDNLearn.com. Our experts are ready to provide prompt and detailed answers to any questions you may have.

Explain how to sketch a graph of the function [tex]f(x) = x^3 + 2x^2 - 8x[/tex]. Be sure to include:

1. End-behavior
2. Zeroes
3. Intervals where the function is positive and negative


Sagot :

Sure! Let's go through a detailed, step-by-step process to sketch the graph of the function [tex]\( f(x) = x^3 + 2x^2 - 8x \)[/tex]. We will include the analysis of critical points, concavity, zeros, and the intervals where the function is positive and negative.

### Step 1: Find the Zeros of the Function
The zeros of the function [tex]\( f(x) \)[/tex] are the values of [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex].

Solving the equation [tex]\( x^3 + 2x^2 - 8x = 0 \)[/tex], we factor:
[tex]\[ x(x^2 + 2x - 8) = 0 \][/tex]

This gives us one zero directly:
[tex]\[ x = 0 \][/tex]

We then factor the quadratic:
[tex]\[ x^2 + 2x - 8 = (x + 4)(x - 2) = 0 \][/tex]

This gives us additional zeros:
[tex]\[ x = -4 \][/tex]
[tex]\[ x = 2 \][/tex]

So, the zeros of the function are: [tex]\( x = -4 \)[/tex], [tex]\( x = 0 \)[/tex], and [tex]\( x = 2 \)[/tex].

### Step 2: Determine End-Behavior
To understand the end-behavior of [tex]\( f(x) \)[/tex], we examine what happens to [tex]\( f(x) \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex].

Since the leading term [tex]\( x^3 \)[/tex] dominates for large absolute values of [tex]\( x \)[/tex]:
- As [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex]
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex]

### Step 3: Find Critical Points and Test for Maxima/Minima
To find the critical points, we first compute the derivative of [tex]\( f(x) \)[/tex]:

[tex]\[ f'(x) = 3x^2 + 4x - 8 \][/tex]

Setting the derivative equal to zero to find the critical points:
[tex]\[ 3x^2 + 4x - 8 = 0 \][/tex]

Solving this quadratic equation, we find:
[tex]\[ x = \frac{-2}{3} + \frac{2\sqrt{7}}{3} \][/tex]
[tex]\[ x = \frac{-2}{3} - \frac{2\sqrt{7}}{3} \][/tex]

### Step 4: Determine Concavity and Inflection Points
To determine concavity, we compute the second derivative of [tex]\( f(x) \)[/tex]:

[tex]\[ f''(x) = 6x + 4 \][/tex]

Setting the second derivative equal to zero to find the inflection points:
[tex]\[ 6x + 4 = 0 \][/tex]
[tex]\[ x = -\frac{2}{3} \][/tex]

At [tex]\( x = -\frac{2}{3} \)[/tex], the concavity of the function changes, indicating an inflection point.

### Step 5: Determine Intervals of Positivity and Negativity
We analyze the intervals where the function is positive or negative.

- For [tex]\( (-\infty, -4) \)[/tex], the function is negative.
- For [tex]\( (-4, 0) \)[/tex], the function is positive.
- For [tex]\( (0, 2) \)[/tex], the function is negative.
- For [tex]\( (2, \infty) \)[/tex], the function is positive.

### Summary and Sketch
We now have all the information needed to sketch the function:

1. Zeros: [tex]\( x = -4 \)[/tex], [tex]\( x = 0 \)[/tex], [tex]\( x = 2 \)[/tex]
2. End-Behavior:
- [tex]\( f(x) \to \infty \)[/tex] as [tex]\( x \to \infty \)[/tex]
- [tex]\( f(x) \to -\infty \)[/tex] as [tex]\( x \to -\infty \)[/tex]
3. Critical Points: [tex]\( x = \frac{-2}{3} + \frac{2\sqrt{7}}{3} \)[/tex], [tex]\( x = \frac{-2}{3} - \frac{2\sqrt{7}}{3} \)[/tex]
4. Inflection Point: [tex]\( x = -\frac{2}{3} \)[/tex]
5. Intervals:
- Negative: [tex]\( (-\infty, -4) \)[/tex], [tex]\( (0, 2) \)[/tex]
- Positive: [tex]\( (-4, 0) \)[/tex], [tex]\( (2, \infty) \)[/tex]

By plotting these points and behavior, we can visually represent the function [tex]\( f(x) \)[/tex].