Discover new information and insights with the help of IDNLearn.com. Find the answers you need quickly and accurately with help from our knowledgeable and experienced experts.
Sagot :
Let's determine the kinetic energy gained by the particle with charge [tex]\( q \)[/tex] as it moves in the presence of a fixed charge [tex]\( Q \)[/tex].
To solve this question, we need to follow these steps:
1. Understand the Given Data:
- Charge of the moving particle [tex]\( q = +15.0 \mu \text{C} \)[/tex].
- Charge of the fixed particle [tex]\( Q = +60.0 \mu \text{C} \)[/tex].
- Initial position of the moving particle [tex]\( x_i = 0.80 \text{ meters} \)[/tex].
- Final position of the moving particle [tex]\( x_f = 1.20 \text{ meters} \)[/tex].
- Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \)[/tex].
2. Convert Charges to Coulombs:
- [tex]\( q = 15.0 \times 10^{-6} \, \text{C} \)[/tex].
- [tex]\( Q = 60.0 \times 10^{-6} \, \text{C} \)[/tex].
3. Calculate Initial Electric Potential Energy:
The initial electric potential energy [tex]\( U_i \)[/tex] at [tex]\( x_i = 0.80 \text{ m} \)[/tex] can be calculated using the formula for electrical potential energy:
[tex]\[ U_i = \frac{k \cdot q \cdot Q}{r_i} \][/tex]
Substituting in the given values:
[tex]\[ U_i = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \cdot 15.0 \times 10^{-6} \, \text{C} \cdot 60.0 \times 10^{-6} \, \text{C}}{0.80 \, \text{m}} \][/tex]
[tex]\[ U_i \approx 10.114 \, \text{J} \][/tex]
4. Calculate Final Electric Potential Energy:
The final electric potential energy [tex]\( U_f \)[/tex] at [tex]\( x_f = 1.20 \text{ m} \)[/tex] can be calculated by:
[tex]\[ U_f = \frac{k \cdot q \cdot Q}{r_f} \][/tex]
Substituting in the given values:
[tex]\[ U_f = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \cdot 15.0 \times 10^{-6} \, \text{C} \cdot 60.0 \times 10^{-6} \, \text{C}}{1.20 \, \text{m}} \][/tex]
[tex]\[ U_f \approx 6.743 \, \text{J} \][/tex]
5. Determine the Kinetic Energy:
The kinetic energy of the particle as it moves from the initial position to the final position is gained by the loss of electric potential energy. Therefore, the kinetic energy ([tex]\( K \)[/tex]) can be calculated as:
[tex]\[ K = U_i - U_f \][/tex]
Substituting in the obtained potential energies:
[tex]\[ K = 10.114 \, \text{J} - 6.743 \, \text{J} \][/tex]
[tex]\[ K \approx 3.371 \, \text{J} \][/tex]
Therefore, the kinetic energy of the particle with charge [tex]\( q \)[/tex] at the instant it has moved to a point [tex]\( x = 1.20 \text{ meters} \)[/tex] on the x-axis is approximately [tex]\( 3.371 \text{ Joules} \)[/tex].
To solve this question, we need to follow these steps:
1. Understand the Given Data:
- Charge of the moving particle [tex]\( q = +15.0 \mu \text{C} \)[/tex].
- Charge of the fixed particle [tex]\( Q = +60.0 \mu \text{C} \)[/tex].
- Initial position of the moving particle [tex]\( x_i = 0.80 \text{ meters} \)[/tex].
- Final position of the moving particle [tex]\( x_f = 1.20 \text{ meters} \)[/tex].
- Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \)[/tex].
2. Convert Charges to Coulombs:
- [tex]\( q = 15.0 \times 10^{-6} \, \text{C} \)[/tex].
- [tex]\( Q = 60.0 \times 10^{-6} \, \text{C} \)[/tex].
3. Calculate Initial Electric Potential Energy:
The initial electric potential energy [tex]\( U_i \)[/tex] at [tex]\( x_i = 0.80 \text{ m} \)[/tex] can be calculated using the formula for electrical potential energy:
[tex]\[ U_i = \frac{k \cdot q \cdot Q}{r_i} \][/tex]
Substituting in the given values:
[tex]\[ U_i = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \cdot 15.0 \times 10^{-6} \, \text{C} \cdot 60.0 \times 10^{-6} \, \text{C}}{0.80 \, \text{m}} \][/tex]
[tex]\[ U_i \approx 10.114 \, \text{J} \][/tex]
4. Calculate Final Electric Potential Energy:
The final electric potential energy [tex]\( U_f \)[/tex] at [tex]\( x_f = 1.20 \text{ m} \)[/tex] can be calculated by:
[tex]\[ U_f = \frac{k \cdot q \cdot Q}{r_f} \][/tex]
Substituting in the given values:
[tex]\[ U_f = \frac{8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \cdot 15.0 \times 10^{-6} \, \text{C} \cdot 60.0 \times 10^{-6} \, \text{C}}{1.20 \, \text{m}} \][/tex]
[tex]\[ U_f \approx 6.743 \, \text{J} \][/tex]
5. Determine the Kinetic Energy:
The kinetic energy of the particle as it moves from the initial position to the final position is gained by the loss of electric potential energy. Therefore, the kinetic energy ([tex]\( K \)[/tex]) can be calculated as:
[tex]\[ K = U_i - U_f \][/tex]
Substituting in the obtained potential energies:
[tex]\[ K = 10.114 \, \text{J} - 6.743 \, \text{J} \][/tex]
[tex]\[ K \approx 3.371 \, \text{J} \][/tex]
Therefore, the kinetic energy of the particle with charge [tex]\( q \)[/tex] at the instant it has moved to a point [tex]\( x = 1.20 \text{ meters} \)[/tex] on the x-axis is approximately [tex]\( 3.371 \text{ Joules} \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.