Get the information you need from a community of experts on IDNLearn.com. Ask anything and receive well-informed answers from our community of experienced professionals.
Sagot :
To eliminate the parameter [tex]\( t \)[/tex] from the parametric equations [tex]\( x = \cos(t) - 5 \)[/tex] and [tex]\( y = 3\sin(t) + 6 \)[/tex], we'll follow these steps:
1. Express the trigonometric functions in terms of [tex]\( t \)[/tex]:
[tex]\[ x = \cos(t) - 5 \][/tex]
[tex]\[ y = 3\sin(t) + 6 \][/tex]
2. Solve [tex]\( x = \cos(t) - 5 \)[/tex] for [tex]\( \cos(t) \)[/tex]:
[tex]\[ x + 5 = \cos(t) \][/tex]
3. Next, isolate [tex]\( \cos(t) \)[/tex]:
[tex]\[ \cos(t) = x + 5 \][/tex]
4. Now, we need to relate [tex]\( y \)[/tex] to [tex]\( \sin(t) \)[/tex]. Given [tex]\( y = 3\sin(t) + 6 \)[/tex]:
[tex]\[ y - 6 = 3\sin(t) \][/tex]
[tex]\[ \sin(t) = \frac{y - 6}{3} \][/tex]
5. Recall the Pythagorean identity [tex]\( \sin^2(t) + \cos^2(t) = 1 \)[/tex]:
Using the expressions we derived for [tex]\( \cos(t) \)[/tex] and [tex]\( \sin(t) \)[/tex]:
[tex]\[ \left( \cos(t) \right)^2 + \left( \sin(t) \right)^2 = 1 \][/tex]
6. Substitute [tex]\( \cos(t) = x + 5 \)[/tex] and [tex]\( \sin(t) = \frac{y - 6}{3} \)[/tex] into the identity:
[tex]\[ (x + 5)^2 + \left( \frac{y - 6}{3} \right)^2 = 1 \][/tex]
7. Expand and simplify the equation:
[tex]\[ (x + 5)^2 + \left( \frac{y - 6}{3} \right)^2 = 1 \][/tex]
[tex]\[ (x + 5)^2 + \frac{(y - 6)^2}{9} = 1 \][/tex]
8. This equation is in the standard form of an ellipse:
[tex]\[ \frac{(x + 5)^2}{1} + \frac{(y - 6)^2}{9} = 1 \][/tex]
Therefore, the rectangular equation describing this curve is an equation of an ellipse:
[tex]\[ \frac{(x + 5)^2}{1} + \frac{(y - 6)^2}{9} = 1 \][/tex]
Conclusion:
The correct answer is that the rectangular equation represents an ellipse.
1. Express the trigonometric functions in terms of [tex]\( t \)[/tex]:
[tex]\[ x = \cos(t) - 5 \][/tex]
[tex]\[ y = 3\sin(t) + 6 \][/tex]
2. Solve [tex]\( x = \cos(t) - 5 \)[/tex] for [tex]\( \cos(t) \)[/tex]:
[tex]\[ x + 5 = \cos(t) \][/tex]
3. Next, isolate [tex]\( \cos(t) \)[/tex]:
[tex]\[ \cos(t) = x + 5 \][/tex]
4. Now, we need to relate [tex]\( y \)[/tex] to [tex]\( \sin(t) \)[/tex]. Given [tex]\( y = 3\sin(t) + 6 \)[/tex]:
[tex]\[ y - 6 = 3\sin(t) \][/tex]
[tex]\[ \sin(t) = \frac{y - 6}{3} \][/tex]
5. Recall the Pythagorean identity [tex]\( \sin^2(t) + \cos^2(t) = 1 \)[/tex]:
Using the expressions we derived for [tex]\( \cos(t) \)[/tex] and [tex]\( \sin(t) \)[/tex]:
[tex]\[ \left( \cos(t) \right)^2 + \left( \sin(t) \right)^2 = 1 \][/tex]
6. Substitute [tex]\( \cos(t) = x + 5 \)[/tex] and [tex]\( \sin(t) = \frac{y - 6}{3} \)[/tex] into the identity:
[tex]\[ (x + 5)^2 + \left( \frac{y - 6}{3} \right)^2 = 1 \][/tex]
7. Expand and simplify the equation:
[tex]\[ (x + 5)^2 + \left( \frac{y - 6}{3} \right)^2 = 1 \][/tex]
[tex]\[ (x + 5)^2 + \frac{(y - 6)^2}{9} = 1 \][/tex]
8. This equation is in the standard form of an ellipse:
[tex]\[ \frac{(x + 5)^2}{1} + \frac{(y - 6)^2}{9} = 1 \][/tex]
Therefore, the rectangular equation describing this curve is an equation of an ellipse:
[tex]\[ \frac{(x + 5)^2}{1} + \frac{(y - 6)^2}{9} = 1 \][/tex]
Conclusion:
The correct answer is that the rectangular equation represents an ellipse.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.