IDNLearn.com: Where your questions meet expert answers and community support. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
Certainly! Let's solve the equation [tex]\( 4^x - 20 \times 2^x + 64 = 0 \)[/tex] step-by-step.
### Step 1: Simplify [tex]\( 4^x \)[/tex]
Notice that [tex]\( 4^x \)[/tex] can be written as [tex]\( (2^2)^x \)[/tex], which simplifies to [tex]\( (2^x)^2 \)[/tex]. Let [tex]\( y = 2^x \)[/tex]. This reduces the equation to a quadratic form:
[tex]\[ (2^x)^2 - 20 \cdot 2^x + 64 = 0 \implies y^2 - 20y + 64 = 0 \][/tex]
### Step 2: Solve the Quadratic Equation
We now have a quadratic equation in terms of [tex]\( y \)[/tex]:
[tex]\[ y^2 - 20y + 64 = 0 \][/tex]
To solve this, we can use the quadratic formula, [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]. Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -20 \)[/tex], and [tex]\( c = 64 \)[/tex]:
[tex]\[ y = \frac{-(-20) \pm \sqrt{(-20)^2 - 4 \cdot 1 \cdot 64}}{2 \cdot 1} \][/tex]
### Step 3: Calculate the Discriminant
First, let's find the discriminant [tex]\( \Delta = b^2 - 4ac \)[/tex]:
[tex]\[ \Delta = (-20)^2 - 4 \cdot 1 \cdot 64 = 400 - 256 = 144 \][/tex]
### Step 4: Solve for [tex]\( y \)[/tex]
Now plug the discriminant back into the quadratic formula:
[tex]\[ y = \frac{20 \pm \sqrt{144}}{2} = \frac{20 \pm 12}{2} \][/tex]
This gives us two solutions:
[tex]\[ y = \frac{20 + 12}{2} = \frac{32}{2} = 16 \][/tex]
[tex]\[ y = \frac{20 - 12}{2} = \frac{8}{2} = 4 \][/tex]
### Step 5: Back-Substitute [tex]\( y = 2^x \)[/tex]
Recall that [tex]\( y = 2^x \)[/tex], so we have two equations to solve:
1. [tex]\( 2^x = 16 \)[/tex]
2. [tex]\( 2^x = 4 \)[/tex]
### Step 6: Solve for [tex]\( x \)[/tex]
For [tex]\( 2^x = 16 \)[/tex]:
[tex]\[ 2^x = 2^4 \implies x = 4 \][/tex]
For [tex]\( 2^x = 4 \)[/tex]:
[tex]\[ 2^x = 2^2 \implies x = 2 \][/tex]
### Conclusion
The values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( 4^x - 20 \times 2^x + 64 = 0 \)[/tex] are:
[tex]\[ \boxed{2 \text{ and } 4} \][/tex]
### Step 1: Simplify [tex]\( 4^x \)[/tex]
Notice that [tex]\( 4^x \)[/tex] can be written as [tex]\( (2^2)^x \)[/tex], which simplifies to [tex]\( (2^x)^2 \)[/tex]. Let [tex]\( y = 2^x \)[/tex]. This reduces the equation to a quadratic form:
[tex]\[ (2^x)^2 - 20 \cdot 2^x + 64 = 0 \implies y^2 - 20y + 64 = 0 \][/tex]
### Step 2: Solve the Quadratic Equation
We now have a quadratic equation in terms of [tex]\( y \)[/tex]:
[tex]\[ y^2 - 20y + 64 = 0 \][/tex]
To solve this, we can use the quadratic formula, [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]. Here, [tex]\( a = 1 \)[/tex], [tex]\( b = -20 \)[/tex], and [tex]\( c = 64 \)[/tex]:
[tex]\[ y = \frac{-(-20) \pm \sqrt{(-20)^2 - 4 \cdot 1 \cdot 64}}{2 \cdot 1} \][/tex]
### Step 3: Calculate the Discriminant
First, let's find the discriminant [tex]\( \Delta = b^2 - 4ac \)[/tex]:
[tex]\[ \Delta = (-20)^2 - 4 \cdot 1 \cdot 64 = 400 - 256 = 144 \][/tex]
### Step 4: Solve for [tex]\( y \)[/tex]
Now plug the discriminant back into the quadratic formula:
[tex]\[ y = \frac{20 \pm \sqrt{144}}{2} = \frac{20 \pm 12}{2} \][/tex]
This gives us two solutions:
[tex]\[ y = \frac{20 + 12}{2} = \frac{32}{2} = 16 \][/tex]
[tex]\[ y = \frac{20 - 12}{2} = \frac{8}{2} = 4 \][/tex]
### Step 5: Back-Substitute [tex]\( y = 2^x \)[/tex]
Recall that [tex]\( y = 2^x \)[/tex], so we have two equations to solve:
1. [tex]\( 2^x = 16 \)[/tex]
2. [tex]\( 2^x = 4 \)[/tex]
### Step 6: Solve for [tex]\( x \)[/tex]
For [tex]\( 2^x = 16 \)[/tex]:
[tex]\[ 2^x = 2^4 \implies x = 4 \][/tex]
For [tex]\( 2^x = 4 \)[/tex]:
[tex]\[ 2^x = 2^2 \implies x = 2 \][/tex]
### Conclusion
The values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( 4^x - 20 \times 2^x + 64 = 0 \)[/tex] are:
[tex]\[ \boxed{2 \text{ and } 4} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.