Discover new knowledge and insights with IDNLearn.com's extensive Q&A platform. Our experts are ready to provide prompt and detailed answers to any questions you may have.
Sagot :
To simplify and solve the given equation [tex]\( a^3 r^3 = -64 \)[/tex] for the variable [tex]\( a \)[/tex], we can follow these steps:
1. Observe the Equation:
The initial equation given is:
[tex]\[ a^3 r^3 = -64 \][/tex]
2. Assume a Value for [tex]\( r \)[/tex]:
Since there is no specific value provided for [tex]\( r \)[/tex], we will assume [tex]\( r = 1 \)[/tex]. This simplifies the equation significantly. By substituting [tex]\( r = 1 \)[/tex] into the equation, we get:
[tex]\[ a^3 \cdot 1^3 = -64 \][/tex]
This simplifies to:
[tex]\[ a^3 = -64 \][/tex]
3. Solve for [tex]\( a \)[/tex]:
To find [tex]\( a \)[/tex], we need to take the cube root of both sides of the equation [tex]\( a^3 = -64 \)[/tex].
[tex]\[ a = \sqrt[3]{-64} \][/tex]
4. Determine the Cube Root:
The cube root of [tex]\(-64\)[/tex] in the set of complex numbers can be determined. Recall that the cube roots of a number [tex]\( n \)[/tex] can be found using the formula for the roots of unity:
[tex]\[ \sqrt[3]{n} = \sqrt[3]{r e^{i(\theta + 2k\pi)/3}} \][/tex]
where [tex]\( r \)[/tex] is the magnitude and [tex]\( \theta \)[/tex] is the argument (angle) of the complex number, and [tex]\( k \)[/tex] denotes the different cube roots (typically [tex]\( k = 0, 1, 2 \)[/tex]).
For [tex]\(-64\)[/tex], we have:
[tex]\[ -64 = 64 e^{i\pi} \][/tex]
Thus, the principal cube root (when [tex]\( k = 0 \)[/tex]) is:
[tex]\[ \sqrt[3]{-64} = \sqrt[3]{64 e^{i \pi}} = \sqrt[3]{64} \cdot e^{i \pi / 3} \][/tex]
5. Simplify the Result:
The cube root of [tex]\( 64 \)[/tex] is [tex]\( 4 \)[/tex], and we account for the complex angle:
[tex]\[ a = 4 e^{i \pi / 3} \][/tex]
Converting [tex]\( e^{i \pi / 3} \)[/tex] back to Cartesian form yields:
[tex]\[ e^{i \pi / 3} = \cos(\pi / 3) + i \sin(\pi / 3) = \frac{1}{2} + i \frac{\sqrt{3}}{2} \][/tex]
Hence, we have:
[tex]\[ a = 4 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = 2 + 2 \sqrt{3} i \][/tex]
Thus, [tex]\( a \)[/tex] is simplified to the complex number:
[tex]\[ a = 2 + 2 \sqrt{3} i \][/tex]
This means that:
[tex]\[ a^3 r^3 = -64 \][/tex]
simplifies such that:
[tex]\[ a = (2 + 2 \sqrt{3} i) \][/tex]
in the specified context of complex numbers.
Therefore, the complete solution gives [tex]\( a = (2 + 3.464101615137754i) \)[/tex].
1. Observe the Equation:
The initial equation given is:
[tex]\[ a^3 r^3 = -64 \][/tex]
2. Assume a Value for [tex]\( r \)[/tex]:
Since there is no specific value provided for [tex]\( r \)[/tex], we will assume [tex]\( r = 1 \)[/tex]. This simplifies the equation significantly. By substituting [tex]\( r = 1 \)[/tex] into the equation, we get:
[tex]\[ a^3 \cdot 1^3 = -64 \][/tex]
This simplifies to:
[tex]\[ a^3 = -64 \][/tex]
3. Solve for [tex]\( a \)[/tex]:
To find [tex]\( a \)[/tex], we need to take the cube root of both sides of the equation [tex]\( a^3 = -64 \)[/tex].
[tex]\[ a = \sqrt[3]{-64} \][/tex]
4. Determine the Cube Root:
The cube root of [tex]\(-64\)[/tex] in the set of complex numbers can be determined. Recall that the cube roots of a number [tex]\( n \)[/tex] can be found using the formula for the roots of unity:
[tex]\[ \sqrt[3]{n} = \sqrt[3]{r e^{i(\theta + 2k\pi)/3}} \][/tex]
where [tex]\( r \)[/tex] is the magnitude and [tex]\( \theta \)[/tex] is the argument (angle) of the complex number, and [tex]\( k \)[/tex] denotes the different cube roots (typically [tex]\( k = 0, 1, 2 \)[/tex]).
For [tex]\(-64\)[/tex], we have:
[tex]\[ -64 = 64 e^{i\pi} \][/tex]
Thus, the principal cube root (when [tex]\( k = 0 \)[/tex]) is:
[tex]\[ \sqrt[3]{-64} = \sqrt[3]{64 e^{i \pi}} = \sqrt[3]{64} \cdot e^{i \pi / 3} \][/tex]
5. Simplify the Result:
The cube root of [tex]\( 64 \)[/tex] is [tex]\( 4 \)[/tex], and we account for the complex angle:
[tex]\[ a = 4 e^{i \pi / 3} \][/tex]
Converting [tex]\( e^{i \pi / 3} \)[/tex] back to Cartesian form yields:
[tex]\[ e^{i \pi / 3} = \cos(\pi / 3) + i \sin(\pi / 3) = \frac{1}{2} + i \frac{\sqrt{3}}{2} \][/tex]
Hence, we have:
[tex]\[ a = 4 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = 2 + 2 \sqrt{3} i \][/tex]
Thus, [tex]\( a \)[/tex] is simplified to the complex number:
[tex]\[ a = 2 + 2 \sqrt{3} i \][/tex]
This means that:
[tex]\[ a^3 r^3 = -64 \][/tex]
simplifies such that:
[tex]\[ a = (2 + 2 \sqrt{3} i) \][/tex]
in the specified context of complex numbers.
Therefore, the complete solution gives [tex]\( a = (2 + 3.464101615137754i) \)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.