IDNLearn.com provides a reliable platform for finding accurate and timely answers. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.
Sagot :
Sure, let's address each problem with a detailed, step-by-step solution.
Problem 6: Find the value of [tex]\( n \)[/tex] such that the equation [tex]\( (5n + 1)x^2 - 8nx + 3n = 0 \)[/tex] is a perfect square.
For a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex] to be a perfect square, the discriminant [tex]\(\Delta\)[/tex] must be zero.
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the equation [tex]\( (5n + 1)x^2 - 8nx + 3n = 0 \)[/tex], we can identify:
[tex]\[ a = 5n + 1, \quad b = -8n, \quad c = 3n \][/tex]
Thus, the discriminant [tex]\(\Delta\)[/tex] is:
[tex]\[ \Delta = (-8n)^2 - 4(5n + 1)(3n) \][/tex]
Calculating it step-by-step:
[tex]\[ \Delta = 64n^2 - 4 \cdot (5n + 1) \cdot 3n \][/tex]
[tex]\[ = 64n^2 - 4 \cdot (15n^2 + 3n) \][/tex]
[tex]\[ = 64n^2 - 60n^2 - 12n \][/tex]
[tex]\[ = 4n^2 - 12n \][/tex]
For the quadratic to be a perfect square, [tex]\(\Delta = 0\)[/tex]:
[tex]\[ 4n^2 - 12n = 0 \][/tex]
Factor the left-hand side:
[tex]\[ 4n(n - 3) = 0 \][/tex]
This gives two solutions:
[tex]\[ n = 0 \quad \text{or} \quad n = 3 \][/tex]
However, [tex]\( n = 0 \)[/tex] would make the equation trivial. Thus, the non-trivial solution is:
[tex]\[ n = 3 \][/tex]
Problem 7: Prove that [tex]\( \cosh^2 x = 1 + 2\sinh^2 x \)[/tex]
Recall the definitions of hyperbolic functions:
[tex]\[ \cosh x = \frac{e^x + e^{-x}}{2}, \quad \sinh x = \frac{e^x - e^{-x}}{2} \][/tex]
First, express [tex]\(\cosh^2 x\)[/tex] in terms of [tex]\(e^x\)[/tex] and [tex]\(e^{-x}\)[/tex]:
[tex]\[ \cosh^2 x = \left( \frac{e^x + e^{-x}}{2} \right)^2 \][/tex]
[tex]\[ = \frac{(e^x + e^{-x})^2}{4} \][/tex]
[tex]\[ = \frac{e^{2x} + 2e^0 + e^{-2x}}{4} \][/tex]
[tex]\[ = \frac{e^{2x} + 2 + e^{-2x}}{4} \][/tex]
Now, express [tex]\(\sinh^2 x\)[/tex]:
[tex]\[ \sinh^2 x = \left( \frac{e^x - e^{-x}}{2} \right)^2 \][/tex]
[tex]\[ = \frac{(e^x - e^{-x})^2}{4} \][/tex]
[tex]\[ = \frac{e^{2x} - 2e^0 + e^{-2x}}{4} \][/tex]
[tex]\[ = \frac{e^{2x} - 2 + e^{-2x}}{4} \][/tex]
Multiply [tex]\(\sinh^2 x\)[/tex] by 2:
[tex]\[ 2\sinh^2 x = 2 \cdot \frac{e^{2x} - 2 + e^{-2x}}{4} \][/tex]
[tex]\[ = \frac{e^{2x} - 2 + e^{-2x}}{2} \][/tex]
Add 1 to both sides:
[tex]\[ 1 + 2\sinh^2 x = 1 + \frac{e^{2x} - 2 + e^{-2x}}{2} \][/tex]
[tex]\[ = \frac{2 + e^{2x} - 2 + e^{-2x}}{2} \][/tex]
[tex]\[ = \frac{e^{2x} + 2 + e^{-2x}}{2} \][/tex]
Thus,
[tex]\[ 1 + 2\sinh^2 x = \cosh^2 x \][/tex]
Problem 8: Prove that [tex]\(\sqrt{5}\)[/tex] is irrational
To prove that [tex]\(\sqrt{5}\)[/tex] is irrational, we use a proof by contradiction.
Assume, for the sake of contradiction, that [tex]\(\sqrt{5}\)[/tex] is rational. This means that [tex]\(\sqrt{5}\)[/tex] can be expressed as a fraction of two integers [tex]\( \frac{a}{b} \)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers with no common factors (i.e., the fraction is in its simplest form), and [tex]\(b \neq 0\)[/tex].
[tex]\[ \sqrt{5} = \frac{a}{b} \][/tex]
Squaring both sides:
[tex]\[ 5 = \frac{a^2}{b^2} \][/tex]
Rearranging gives:
[tex]\[ a^2 = 5b^2 \][/tex]
This equation implies that [tex]\(a^2\)[/tex] is divisible by 5. Therefore, [tex]\(a\)[/tex] must also be divisible by 5 (because 5 is a prime number, if [tex]\(a^2\)[/tex] is divisible by 5, then [tex]\(a\)[/tex] must be).
Let [tex]\( a = 5k \)[/tex] for some integer [tex]\( k \)[/tex].
Substitute back into the equation:
[tex]\[ (5k)^2 = 5b^2 \][/tex]
[tex]\[ 25k^2 = 5b^2 \][/tex]
[tex]\[ 5k^2 = b^2 \][/tex]
This implies that [tex]\(b^2\)[/tex] is also divisible by 5, and hence [tex]\(b\)[/tex] must be divisible by 5.
Since both [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are divisible by 5, they have a common factor of 5, which contradicts our initial assumption that [tex]\( a \)[/tex] and [tex]\( b \)[/tex] have no common factors (i.e., the fraction [tex]\( \frac{a}{b} \)[/tex] is in simplest form). Therefore, our initial assumption that [tex]\(\sqrt{5}\)[/tex] is rational must be false.
Thus, [tex]\(\sqrt{5}\)[/tex] is irrational.
Problem 6: Find the value of [tex]\( n \)[/tex] such that the equation [tex]\( (5n + 1)x^2 - 8nx + 3n = 0 \)[/tex] is a perfect square.
For a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex] to be a perfect square, the discriminant [tex]\(\Delta\)[/tex] must be zero.
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For the equation [tex]\( (5n + 1)x^2 - 8nx + 3n = 0 \)[/tex], we can identify:
[tex]\[ a = 5n + 1, \quad b = -8n, \quad c = 3n \][/tex]
Thus, the discriminant [tex]\(\Delta\)[/tex] is:
[tex]\[ \Delta = (-8n)^2 - 4(5n + 1)(3n) \][/tex]
Calculating it step-by-step:
[tex]\[ \Delta = 64n^2 - 4 \cdot (5n + 1) \cdot 3n \][/tex]
[tex]\[ = 64n^2 - 4 \cdot (15n^2 + 3n) \][/tex]
[tex]\[ = 64n^2 - 60n^2 - 12n \][/tex]
[tex]\[ = 4n^2 - 12n \][/tex]
For the quadratic to be a perfect square, [tex]\(\Delta = 0\)[/tex]:
[tex]\[ 4n^2 - 12n = 0 \][/tex]
Factor the left-hand side:
[tex]\[ 4n(n - 3) = 0 \][/tex]
This gives two solutions:
[tex]\[ n = 0 \quad \text{or} \quad n = 3 \][/tex]
However, [tex]\( n = 0 \)[/tex] would make the equation trivial. Thus, the non-trivial solution is:
[tex]\[ n = 3 \][/tex]
Problem 7: Prove that [tex]\( \cosh^2 x = 1 + 2\sinh^2 x \)[/tex]
Recall the definitions of hyperbolic functions:
[tex]\[ \cosh x = \frac{e^x + e^{-x}}{2}, \quad \sinh x = \frac{e^x - e^{-x}}{2} \][/tex]
First, express [tex]\(\cosh^2 x\)[/tex] in terms of [tex]\(e^x\)[/tex] and [tex]\(e^{-x}\)[/tex]:
[tex]\[ \cosh^2 x = \left( \frac{e^x + e^{-x}}{2} \right)^2 \][/tex]
[tex]\[ = \frac{(e^x + e^{-x})^2}{4} \][/tex]
[tex]\[ = \frac{e^{2x} + 2e^0 + e^{-2x}}{4} \][/tex]
[tex]\[ = \frac{e^{2x} + 2 + e^{-2x}}{4} \][/tex]
Now, express [tex]\(\sinh^2 x\)[/tex]:
[tex]\[ \sinh^2 x = \left( \frac{e^x - e^{-x}}{2} \right)^2 \][/tex]
[tex]\[ = \frac{(e^x - e^{-x})^2}{4} \][/tex]
[tex]\[ = \frac{e^{2x} - 2e^0 + e^{-2x}}{4} \][/tex]
[tex]\[ = \frac{e^{2x} - 2 + e^{-2x}}{4} \][/tex]
Multiply [tex]\(\sinh^2 x\)[/tex] by 2:
[tex]\[ 2\sinh^2 x = 2 \cdot \frac{e^{2x} - 2 + e^{-2x}}{4} \][/tex]
[tex]\[ = \frac{e^{2x} - 2 + e^{-2x}}{2} \][/tex]
Add 1 to both sides:
[tex]\[ 1 + 2\sinh^2 x = 1 + \frac{e^{2x} - 2 + e^{-2x}}{2} \][/tex]
[tex]\[ = \frac{2 + e^{2x} - 2 + e^{-2x}}{2} \][/tex]
[tex]\[ = \frac{e^{2x} + 2 + e^{-2x}}{2} \][/tex]
Thus,
[tex]\[ 1 + 2\sinh^2 x = \cosh^2 x \][/tex]
Problem 8: Prove that [tex]\(\sqrt{5}\)[/tex] is irrational
To prove that [tex]\(\sqrt{5}\)[/tex] is irrational, we use a proof by contradiction.
Assume, for the sake of contradiction, that [tex]\(\sqrt{5}\)[/tex] is rational. This means that [tex]\(\sqrt{5}\)[/tex] can be expressed as a fraction of two integers [tex]\( \frac{a}{b} \)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers with no common factors (i.e., the fraction is in its simplest form), and [tex]\(b \neq 0\)[/tex].
[tex]\[ \sqrt{5} = \frac{a}{b} \][/tex]
Squaring both sides:
[tex]\[ 5 = \frac{a^2}{b^2} \][/tex]
Rearranging gives:
[tex]\[ a^2 = 5b^2 \][/tex]
This equation implies that [tex]\(a^2\)[/tex] is divisible by 5. Therefore, [tex]\(a\)[/tex] must also be divisible by 5 (because 5 is a prime number, if [tex]\(a^2\)[/tex] is divisible by 5, then [tex]\(a\)[/tex] must be).
Let [tex]\( a = 5k \)[/tex] for some integer [tex]\( k \)[/tex].
Substitute back into the equation:
[tex]\[ (5k)^2 = 5b^2 \][/tex]
[tex]\[ 25k^2 = 5b^2 \][/tex]
[tex]\[ 5k^2 = b^2 \][/tex]
This implies that [tex]\(b^2\)[/tex] is also divisible by 5, and hence [tex]\(b\)[/tex] must be divisible by 5.
Since both [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are divisible by 5, they have a common factor of 5, which contradicts our initial assumption that [tex]\( a \)[/tex] and [tex]\( b \)[/tex] have no common factors (i.e., the fraction [tex]\( \frac{a}{b} \)[/tex] is in simplest form). Therefore, our initial assumption that [tex]\(\sqrt{5}\)[/tex] is rational must be false.
Thus, [tex]\(\sqrt{5}\)[/tex] is irrational.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.