Answered

Get the information you need from a community of experts on IDNLearn.com. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.

12. The electric field associated with a light wave is

[tex]\[ E = E_0 \sin \left[1.57 \times 10^7 (x - c t)\right] \][/tex]

where [tex]\( x \)[/tex] is in meters and [tex]\( t \)[/tex] is in seconds. If this light is used to produce photoelectric emission from the surface of a metal with a work function of 1.9 eV, then the stopping potential will be:


Sagot :

To solve the problem of finding the stopping potential when light is used to produce photoelectric emission from the surface of a metal with a given work function, we can follow these steps:

### Step 1: Determine the wavelength of the light wave
From the given electric field equation for the light wave:
[tex]\[ E = E_0 \sin \left( 1.57 \times 10^7 (x - ct) \right) \][/tex]

The term [tex]\( 1.57 \times 10^7 \)[/tex] in the argument of the sine function is the angular wave number [tex]\( k \)[/tex] and is given in radians per meter.
[tex]\[ k = 1.57 \times 10^7 \, \text{rad/m} \][/tex]

The relationship between wave number [tex]\( k \)[/tex] and wavelength [tex]\( \lambda \)[/tex] is:
[tex]\[ k = \frac{2\pi}{\lambda} \][/tex]

Rearranging this for [tex]\( \lambda \)[/tex]:
[tex]\[ \lambda = \frac{2\pi}{k} \][/tex]

Plugging in the value of [tex]\( k \)[/tex]:
[tex]\[ \lambda = \frac{2\pi}{1.57 \times 10^7} \approx 4.002 \times 10^{-7} \, \text{m} \][/tex]

### Step 2: Calculate the energy of the photon
The energy [tex]\( E_{\text{photon}} \)[/tex] of a photon is related to its wavelength [tex]\( \lambda \)[/tex] by the equation:
[tex]\[ E_{\text{photon}} = \frac{hc}{\lambda} \][/tex]

Where:
- [tex]\( h \)[/tex] is Planck’s constant ([tex]\( 6.62607015 \times 10^{-34} \, \text{Js} \)[/tex])
- [tex]\( c \)[/tex] is the speed of light ([tex]\( 3.0 \times 10^8 \, \text{m/s} \)[/tex])

Substituting the known values:
[tex]\[ E_{\text{photon}} = \frac{6.62607015 \times 10^{-34} \times 3.0 \times 10^8}{4.002 \times 10^{-7}} \approx 4.967 \times 10^{-19} \, \text{J} \][/tex]

### Step 3: Convert the work function from eV to Joules
The work function [tex]\( \phi \)[/tex] is given as [tex]\( 1.9 \, \text{eV} \)[/tex]. To convert electron volts to Joules:
[tex]\[ 1 \, \text{eV} = 1.60218 \times 10^{-19} \, \text{J} \][/tex]

Thus:
[tex]\[ \phi = 1.9 \, \text{eV} \times 1.60218 \times 10^{-19} \, \text{J/eV} \approx 3.044 \times 10^{-19} \, \text{J} \][/tex]

### Step 4: Calculate the maximum kinetic energy of the emitted electron
Using the photoelectric effect equation, the kinetic energy [tex]\( KE_{\text{max}} \)[/tex] of the emitted electron is given by:
[tex]\[ KE_{\text{max}} = E_{\text{photon}} - \phi \][/tex]

Substituting in the values:
[tex]\[ KE_{\text{max}} = 4.967 \times 10^{-19} \, \text{J} - 3.044 \times 10^{-19} \, \text{J} \approx 1.923 \times 10^{-19} \, \text{J} \][/tex]

### Step 5: Determine the stopping potential
The stopping potential [tex]\( V_{\text{stop}} \)[/tex] is related to the maximum kinetic energy by:
[tex]\[ KE_{\text{max}} = eV_{\text{stop}} \][/tex]

Where [tex]\( e \)[/tex] is the elementary charge ([tex]\( 1.60218 \times 10^{-19} \, \text{C} \)[/tex]).

Solving for [tex]\( V_{\text{stop}} \)[/tex]:
[tex]\[ V_{\text{stop}} = \frac{KE_{\text{max}}}{e} \][/tex]

[tex]\[ V_{\text{stop}} = \frac{1.923 \times 10^{-19} \, \text{J}}{1.60218 \times 10^{-19} \, \text{C}} \approx 1.200 \, \text{V} \][/tex]

### Conclusion
The stopping potential for the photoelectric emission from the metal surface is approximately 1.20 V.