Get the answers you've been looking for with the help of IDNLearn.com's expert community. Our platform offers detailed and accurate responses from experts, helping you navigate any topic with confidence.

Electron falls from [tex]\( n = 7 \)[/tex] to [tex]\( n = 4 \)[/tex]

Practice Question 1

An electron of a hydrogen atom is excited to the energy level [tex]\( n = 5 \)[/tex] and falls back to a lower energy level forming the Paschen series. Calculate:

a) The energy of the electron at the excited state.
b) The energy emitted by one mole of electrons.
c) The wavelength of the photon.

Answer:

Energy level [tex]\( n = 5 \)[/tex]

Paschen series [tex]\( = n_3 \)[/tex]

a) [tex]\( E_n = -R_H \left( \frac{1}{n^2} \right) \)[/tex]


Sagot :

Sure, let's go through the problem step-by-step.

### Given:
- The Rydberg constant, [tex]\( R_H = 2.18 \times 10^{-18} \, \text{J} \)[/tex]
- Speed of light, [tex]\( c = 3.00 \times 10^8 \, \text{m/s} \)[/tex]
- Planck's constant, [tex]\( h = 6.63 \times 10^{-34} \, \text{J}\cdot\text{s} \)[/tex]
- Avogadro's number, [tex]\( N_A = 6.022 \times 10^{23} \, \text{mol}^{-1} \)[/tex]

### Problem:
Calculate for an electron in the hydrogen atom which falls from [tex]\( n = 5 \)[/tex] to [tex]\( n = 3 \)[/tex]:

(a) The energy of the electron at the excited state ([tex]\( n = 5 \)[/tex]).
(b) The energy emitted by one mole of electrons.
(c) The wavelength of the emitted photon.

### Solution:

#### (a) Energy of the electron at the excited state

The energy of an electron in a hydrogen atom at a given energy level [tex]\( n \)[/tex] is given by:
[tex]\[ E_n = - R_H \left( \frac{1}{n^2} \right) \][/tex]

For [tex]\( n = 5 \)[/tex]:
[tex]\[ E_5 = - R_H \left( \frac{1}{5^2} \right) \][/tex]
[tex]\[ E_5 = - R_H \left( \frac{1}{25} \right) \][/tex]
[tex]\[ E_5 = - 2.18 \times 10^{-18} \times \frac{1}{25} \][/tex]
[tex]\[ E_5 \approx -8.72 \times 10^{-20} \, \text{J} \][/tex]

So, the energy of the electron at [tex]\( n = 5 \)[/tex] is [tex]\( -8.72 \times 10^{-20} \, \text{J} \)[/tex].

#### (b) Energy emitted by one mole of electrons

We first need to calculate the energy of the electron at the final state [tex]\( n = 3 \)[/tex].

For [tex]\( n = 3 \)[/tex]:
[tex]\[ E_3 = - R_H \left( \frac{1}{3^2} \right) \][/tex]
[tex]\[ E_3 = - R_H \left( \frac{1}{9} \right) \][/tex]
[tex]\[ E_3 = - 2.18 \times 10^{-18} \times \frac{1}{9} \][/tex]
[tex]\[ E_3 \approx -2.422222222222222 \times 10^{-19} \, \text{J} \][/tex]

The energy emitted by the electron as it transitions from [tex]\( n = 5 \)[/tex] to [tex]\( n = 3 \)[/tex]:
[tex]\[ \Delta E = E_3 - E_5 \][/tex]
[tex]\[ \Delta E = -2.422222222222222 \times 10^{-19} - (-8.72 \times 10^{-20}) \][/tex]
[tex]\[ \Delta E \approx -1.550222222222222 \times 10^{-19} \, \text{J} \][/tex]

The energy emitted by one mole of electrons:
[tex]\[ \text{Energy}_\text{mole} = \Delta E \times N_A \][/tex]
[tex]\[ \text{Energy}_\text{mole} = -1.550222222222222 \times 10^{-19} \times 6.022 \times 10^{23} \][/tex]
[tex]\[ \text{Energy}_\text{mole} \approx -93354.38222222221 \, \text{J/mol} \][/tex]

So, the energy emitted by one mole of electrons is approximately [tex]\(-93354.38222222221 \, \text{J/mol}\)[/tex].

#### (c) Wavelength of the emitted photon

Using the relationship between the energy of a photon, its wavelength, and the constants [tex]\( h \)[/tex] and [tex]\( c \)[/tex]:
[tex]\[ \Delta E = h \nu \][/tex]
[tex]\[ \Delta E = \frac{h c}{\lambda} \][/tex]

Rearranging for the wavelength [tex]\( \lambda \)[/tex]:
[tex]\[ \lambda = \frac{h c}{\Delta E} \][/tex]

Substituting the values:
[tex]\[ \lambda = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{1.550222222222222 \times 10^{-19}} \][/tex]
[tex]\[ \lambda \approx 1.2830418577981652 \times 10^{-6} \, \text{m} \][/tex]
[tex]\[ \lambda \approx 1283 \, \text{nm} \][/tex] (convert meters to nanometers by multiplying by [tex]\(10^9\)[/tex])

So, the wavelength of the emitted photon is approximately [tex]\( 1283 \, \text{nm} \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.