IDNLearn.com makes it easy to find accurate answers to your questions. Ask anything and receive immediate, well-informed answers from our dedicated community of experts.

Calculate the minimum frequency of the radiation for which electrons will be emitted from a metallic surface. Assume that [tex]$h = 6.6 \times 10^{-34} Js$[/tex].

Given:
- The maximum kinetic energy of the electrons emitted is [tex]$1.6 \times 10^{-19} J$[/tex]
- The frequency of the radiation is [tex][tex]$7.5 \times 10^{14} Hz$[/tex][/tex]

Answer: [tex]$5 \approx 10^{14} Hz$[/tex]


Sagot :

To solve for the minimum frequency of the radiation required to emit electrons from a metallic surface given the maximum kinetic energy, we use the photoelectric effect equation:

[tex]\[ KE_{\text{max}} = h \cdot f - h \cdot f_{\text{min}} \][/tex]

where:

- [tex]\( KE_{\text{max}} \)[/tex] is the maximum kinetic energy of the emitted electrons.
- [tex]\( h \)[/tex] is Planck's constant.
- [tex]\( f \)[/tex] is the frequency of the incoming radiation.
- [tex]\( f_{\text{min}} \)[/tex] is the minimum frequency needed to emit electrons.

Given data:
- [tex]\( KE_{\text{max}} = 1.6 \times 10^{-19} \, \text{J} \)[/tex]
- [tex]\( f = 7.5 \times 10^{14} \, \text{Hz} \)[/tex]
- [tex]\( h = 6.6 \times 10^{-34} \, \text{Js} \)[/tex]

First, using the photoelectric equation:

[tex]\[ 1.6 \times 10^{-19} \, \text{J} = (6.6 \times 10^{-34} \, \text{Js}) \cdot (7.5 \times 10^{14} \, \text{Hz}) - (6.6 \times 10^{-34} \, \text{Js}) \cdot f_{\text{min}} \][/tex]

We substitute the given values into the equation:

[tex]\[ 1.6 \times 10^{-19} = (6.6 \times 10^{-34}) \cdot (7.5 \times 10^{14}) - (6.6 \times 10^{-34}) \cdot f_{\text{min}} \][/tex]

To isolate [tex]\( f_{\text{min}} \)[/tex], arrange the equation as follows:

[tex]\[ 1.6 \times 10^{-19} = (6.6 \times 10^{-34} \cdot 7.5 \times 10^{14}) - (6.6 \times 10^{-34} \cdot f_{\text{min}}) \][/tex]

Calculate [tex]\( 6.6 \times 10^{-34} \cdot 7.5 \times 10^{14} \)[/tex]:

[tex]\[ 6.6 \times 10^{-34} \cdot 7.5 \times 10^{14} = 4.95 \times 10^{-19} \][/tex]

So the equation now is:

[tex]\[ 1.6 \times 10^{-19} = 4.95 \times 10^{-19} - 6.6 \times 10^{-34} \cdot f_{\text{min}} \][/tex]

Rearranging it to solve for [tex]\( f_{\text{min}} \)[/tex]:

[tex]\[ 6.6 \times 10^{-34} \cdot f_{\text{min}} = 4.95 \times 10^{-19} - 1.6 \times 10^{-19} \][/tex]

[tex]\[ 6.6 \times 10^{-34} \cdot f_{\text{min}} = 3.35 \times 10^{-19} \][/tex]

[tex]\[ f_{\text{min}} = \frac{3.35 \times 10^{-19}}{6.6 \times 10^{-34}} \][/tex]

[tex]\[ f_{\text{min}} = 5.075757575757576 \times 10^{14} \, \text{Hz} \][/tex]

Therefore, the minimum frequency of the radiation required to emit electrons from the metallic surface is approximately:

[tex]\[ f_{\text{min}} \approx 5.08 \times 10^{14} \, \text{Hz} \][/tex]