Solve your doubts and expand your knowledge with IDNLearn.com's extensive Q&A database. Find accurate and detailed answers to your questions from our experienced and dedicated community members.

Use Lagrange multipliers to find the maximum or minimum values of the function subject to the given constraint. (If an answer does not exist, enter DNE.)

[tex]\[ f(x, y) = 8xy \quad \text{subject to} \quad x^2 + y^2 = 9 \][/tex]

Maximum: [tex]$\square$[/tex]

Minimum: [tex]$\square$[/tex]


Sagot :

To solve the problem of finding the maximum and minimum values of the function [tex]\( f(x, y) = 8xy \)[/tex] subject to the constraint [tex]\( x^2 + y^2 = 9 \)[/tex], we can use the method of Lagrange multipliers.

### Step 1: Formulate the Lagrange Function
First, define the constraint [tex]\( g(x, y) = x^2 + y^2 - 9 = 0 \)[/tex]. According to the method of Lagrange multipliers, we introduce a new variable [tex]\( \lambda \)[/tex] and form the Lagrange function [tex]\( \mathcal{L} \)[/tex]:

[tex]\[ \mathcal{L}(x, y, \lambda) = f(x, y) + \lambda g(x, y) \][/tex]

Substitute [tex]\( f(x, y) \)[/tex] and [tex]\( g(x, y) \)[/tex] into the Lagrange function:

[tex]\[ \mathcal{L}(x, y, \lambda) = 8xy + \lambda (x^2 + y^2 - 9) \][/tex]

### Step 2: Take Partial Derivatives
Compute the partial derivatives of [tex]\( \mathcal{L} \)[/tex] with respect to [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( \lambda \)[/tex]:

[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 8y + \lambda 2x \][/tex]

[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 8x + \lambda 2y \][/tex]

[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = x^2 + y^2 - 9 \][/tex]

### Step 3: Solve the System of Equations
Set the partial derivatives equal to zero and solve the system of equations:

[tex]\[ 8y + \lambda 2x = 0 \][/tex]

[tex]\[ 8x + \lambda 2y = 0 \][/tex]

[tex]\[ x^2 + y^2 - 9 = 0 \][/tex]

From the first two equations, we get:
[tex]\[ \lambda = -\frac{8y}{2x} = -\frac{4y}{x} \][/tex]
[tex]\[ \lambda = -\frac{8x}{2y} = -\frac{4x}{y} \][/tex]

Since both expressions for [tex]\( \lambda \)[/tex] must be equal, set them equal to each other:
[tex]\[ -\frac{4y}{x} = -\frac{4x}{y} \][/tex]
[tex]\[ \frac{y}{x} = \frac{x}{y} \][/tex]

This implies [tex]\( y^2 = x^2 \)[/tex], so [tex]\( y = x \)[/tex] or [tex]\( y = -x \)[/tex].

### Step 4: Substitute Back into the Constraint
Substitute [tex]\( y = x \)[/tex] and [tex]\( y = -x \)[/tex] into the constraint [tex]\( x^2 + y^2 = 9 \)[/tex]:

1. For [tex]\( y = x \)[/tex]:
[tex]\[ x^2 + x^2 = 9 \][/tex]
[tex]\[ 2x^2 = 9 \][/tex]
[tex]\[ x^2 = \frac{9}{2} \][/tex]
[tex]\[ x = \pm \frac{3}{\sqrt{2}} \][/tex]
So, [tex]\( y = \pm \frac{3}{\sqrt{2}} \)[/tex].

2. For [tex]\( y = -x \)[/tex]:
[tex]\[ x^2 + (-x)^2 = 9 \][/tex]
[tex]\[ 2x^2 = 9 \][/tex]
[tex]\[ x^2 = \frac{9}{2} \][/tex]
[tex]\[ x = \pm \frac{3}{\sqrt{2}} \][/tex]
So, [tex]\( y = \mp \frac{3}{\sqrt{2}} \)[/tex].

### Step 5: Evaluate [tex]\( f(x, y) \)[/tex]
Evaluate [tex]\( f(x, y) = 8xy \)[/tex] at the critical points:

1. For [tex]\( (x, y) = \left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right) \)[/tex] and [tex]\( \left(-\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right) \)[/tex]:
[tex]\[ f\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right) = 8 \cdot \frac{3}{\sqrt{2}} \cdot \frac{3}{\sqrt{2}} = 8 \cdot \frac{9}{2} = 36 \][/tex]
[tex]\[ f\left(-\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right) = 36 \][/tex]

2. For [tex]\( (x, y) = \left(\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right) \)[/tex] and [tex]\( \left(-\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right) \)[/tex]:
[tex]\[ f\left(\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right) = 8 \cdot \frac{3}{\sqrt{2}} \cdot -\frac{3}{\sqrt{2}} = 8 \cdot -\frac{9}{2} = -36 \][/tex]
[tex]\[ f\left(-\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right) = -36 \][/tex]

### Conclusion
The maximum value of [tex]\( f(x, y) \)[/tex] is [tex]\( 36 \)[/tex].
The minimum value of [tex]\( f(x, y) \)[/tex] is [tex]\( -36 \)[/tex].

So the answers are:
[tex]\[ \text{maximum } = 36 \][/tex]
[tex]\[ \text{minimum } = -36 \][/tex]