Discover the best answers to your questions with the help of IDNLearn.com. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
Certainly! Let's go through each part of the question step-by-step.
### Part (a)
Evaluate: [tex]\(2 \frac{1}{2} + 3 \frac{1}{8} \div 1 \frac{1}{4}\)[/tex]
First, we need to convert the mixed numbers to improper fractions:
- [tex]\(2 \frac{1}{2} = 2 + \frac{1}{2} = \frac{4}{2} + \frac{1}{2} = \frac{5}{2}\)[/tex]
- [tex]\(3 \frac{1}{8} = 3 + \frac{1}{8} = \frac{24}{8} + \frac{1}{8} = \frac{25}{8}\)[/tex]
- [tex]\(1 \frac{1}{4} = 1 + \frac{1}{4} = \frac{4}{4} + \frac{1}{4} = \frac{5}{4}\)[/tex]
We evaluate the division first: [tex]\(\frac{25}{8} \div \frac{5}{4}\)[/tex]. When we divide by a fraction, we multiply by its reciprocal:
[tex]\[ \frac{25}{8} \div \frac{5}{4} = \frac{25}{8} \times \frac{4}{5} = \frac{25 \times 4}{8 \times 5} = \frac{100}{40} = \frac{5}{2} \][/tex]
Now, add this result to [tex]\(\frac{5}{2}\)[/tex]:
[tex]\[ \frac{5}{2} + \frac{5}{2} = \frac{5+5}{2} = \frac{10}{2} = 5.0 \][/tex]
So, the result for part (a) is [tex]\(5.0\)[/tex].
### Part (b)
The sum of money is divided into four parts in the ratio [tex]\(1:2:3:4\)[/tex]. If the largest part is 10,000, find the value of the other parts.
Let the parts be [tex]\( x, 2x, 3x, 4x \)[/tex]. According to the problem, the largest part [tex]\(4x = 10,000\)[/tex]:
[tex]\[ 4x = 10,000 \implies x = \frac{10,000}{4} = 2,500 \][/tex]
Therefore, the parts are:
[tex]\[ \begin{align*} \text{Part 1} &= x = 2,500 \\ \text{Part 2} &= 2x = 2(2,500) = 5,000 \\ \text{Part 3} &= 3x = 3(2,500) = 7,500 \\ \text{Part 4} &= 4x = 10,000 \end{align*} \][/tex]
So, the values of the parts are 2,500, 5,000, 7,500, and 10,000.
### Part (c)
Solve the equation: [tex]\(\log_5(x^2 - 3x + 2) = 2 + \log_5(x-1)\)[/tex].
To solve this, we use logarithmic properties:
[tex]\[ \log_5(x^2 - 3x + 2) = 2 + \log_5(x-1) \][/tex]
Rewriting [tex]\(2\)[/tex] in terms of the log base 5:
[tex]\[ 2 = \log_5(25) \][/tex]
Thus, the equation becomes:
[tex]\[ \log_5(x^2 - 3x + 2) = \log_5(25) + \log_5(x-1) \][/tex]
Using the property [tex]\(\log_b(a) + \log_b(c) = \log_b(ac)\)[/tex]:
[tex]\[ \log_5(x^2 - 3x + 2) = \log_5[25(x-1)] \][/tex]
Since the bases and the logarithms are identical, we can equate the arguments:
[tex]\[ x^2 - 3x + 2 = 25(x - 1) \][/tex]
Simplify the equation:
[tex]\[ x^2 - 3x + 2 = 25x - 25 \implies x^2 - 3x + 2 - 25x + 25 = 0 \implies x^2 - 28x + 27 = 0 \][/tex]
Solve the quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ x = \frac{28 \pm \sqrt{(-28)^2 - 4 \cdot 1 \cdot 27}}{2 \cdot 1} = \frac{28 \pm \sqrt{784 - 108}}{2} = \frac{28 \pm \sqrt{676}}{2} = \frac{28 \pm 26}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{28 + 26}{2} = 27, \quad x = \frac{28 - 26}{2} = 1 \][/tex]
However, [tex]\( x = 1 \)[/tex] does not satisfy the logarithmic constraints (since [tex]\(\log_5(0)\)[/tex] is undefined). Therefore, the solution is:
[tex]\[ x = 27 \][/tex]
### Part (d)
Calculate the sum of the first five terms of the progression:
[tex]\[ 800, 1600, 3200, \ldots \][/tex]
This is a geometric progression where the first term [tex]\(a = 800\)[/tex] and the common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric progression is given by:
[tex]\[ S_n = a \frac{1 - r^n}{1 - r} \][/tex]
Given [tex]\(n = 5\)[/tex]:
[tex]\[ S_5 = 800 \frac{1 - 2^5}{1 - 2} = 800 \frac{1 - 32}{-1} = 800 \frac{-31}{-1} = 800 \times 31 = 24,800 \][/tex]
Therefore, the sum of the first five terms is [tex]\(24,800\)[/tex].
In conclusion, the answers to the question parts are as follows:
[tex]\[ \begin{align*} (a) & \quad 5.0 \\ (b) & \quad 2,500, 5,000, 7,500, 10,000 \\ (c) & \quad x = 27 \\ (d) & \quad 24,800 \end{align*} \][/tex]
### Part (a)
Evaluate: [tex]\(2 \frac{1}{2} + 3 \frac{1}{8} \div 1 \frac{1}{4}\)[/tex]
First, we need to convert the mixed numbers to improper fractions:
- [tex]\(2 \frac{1}{2} = 2 + \frac{1}{2} = \frac{4}{2} + \frac{1}{2} = \frac{5}{2}\)[/tex]
- [tex]\(3 \frac{1}{8} = 3 + \frac{1}{8} = \frac{24}{8} + \frac{1}{8} = \frac{25}{8}\)[/tex]
- [tex]\(1 \frac{1}{4} = 1 + \frac{1}{4} = \frac{4}{4} + \frac{1}{4} = \frac{5}{4}\)[/tex]
We evaluate the division first: [tex]\(\frac{25}{8} \div \frac{5}{4}\)[/tex]. When we divide by a fraction, we multiply by its reciprocal:
[tex]\[ \frac{25}{8} \div \frac{5}{4} = \frac{25}{8} \times \frac{4}{5} = \frac{25 \times 4}{8 \times 5} = \frac{100}{40} = \frac{5}{2} \][/tex]
Now, add this result to [tex]\(\frac{5}{2}\)[/tex]:
[tex]\[ \frac{5}{2} + \frac{5}{2} = \frac{5+5}{2} = \frac{10}{2} = 5.0 \][/tex]
So, the result for part (a) is [tex]\(5.0\)[/tex].
### Part (b)
The sum of money is divided into four parts in the ratio [tex]\(1:2:3:4\)[/tex]. If the largest part is 10,000, find the value of the other parts.
Let the parts be [tex]\( x, 2x, 3x, 4x \)[/tex]. According to the problem, the largest part [tex]\(4x = 10,000\)[/tex]:
[tex]\[ 4x = 10,000 \implies x = \frac{10,000}{4} = 2,500 \][/tex]
Therefore, the parts are:
[tex]\[ \begin{align*} \text{Part 1} &= x = 2,500 \\ \text{Part 2} &= 2x = 2(2,500) = 5,000 \\ \text{Part 3} &= 3x = 3(2,500) = 7,500 \\ \text{Part 4} &= 4x = 10,000 \end{align*} \][/tex]
So, the values of the parts are 2,500, 5,000, 7,500, and 10,000.
### Part (c)
Solve the equation: [tex]\(\log_5(x^2 - 3x + 2) = 2 + \log_5(x-1)\)[/tex].
To solve this, we use logarithmic properties:
[tex]\[ \log_5(x^2 - 3x + 2) = 2 + \log_5(x-1) \][/tex]
Rewriting [tex]\(2\)[/tex] in terms of the log base 5:
[tex]\[ 2 = \log_5(25) \][/tex]
Thus, the equation becomes:
[tex]\[ \log_5(x^2 - 3x + 2) = \log_5(25) + \log_5(x-1) \][/tex]
Using the property [tex]\(\log_b(a) + \log_b(c) = \log_b(ac)\)[/tex]:
[tex]\[ \log_5(x^2 - 3x + 2) = \log_5[25(x-1)] \][/tex]
Since the bases and the logarithms are identical, we can equate the arguments:
[tex]\[ x^2 - 3x + 2 = 25(x - 1) \][/tex]
Simplify the equation:
[tex]\[ x^2 - 3x + 2 = 25x - 25 \implies x^2 - 3x + 2 - 25x + 25 = 0 \implies x^2 - 28x + 27 = 0 \][/tex]
Solve the quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ x = \frac{28 \pm \sqrt{(-28)^2 - 4 \cdot 1 \cdot 27}}{2 \cdot 1} = \frac{28 \pm \sqrt{784 - 108}}{2} = \frac{28 \pm \sqrt{676}}{2} = \frac{28 \pm 26}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{28 + 26}{2} = 27, \quad x = \frac{28 - 26}{2} = 1 \][/tex]
However, [tex]\( x = 1 \)[/tex] does not satisfy the logarithmic constraints (since [tex]\(\log_5(0)\)[/tex] is undefined). Therefore, the solution is:
[tex]\[ x = 27 \][/tex]
### Part (d)
Calculate the sum of the first five terms of the progression:
[tex]\[ 800, 1600, 3200, \ldots \][/tex]
This is a geometric progression where the first term [tex]\(a = 800\)[/tex] and the common ratio [tex]\(r = 2\)[/tex]. The sum of the first [tex]\(n\)[/tex] terms of a geometric progression is given by:
[tex]\[ S_n = a \frac{1 - r^n}{1 - r} \][/tex]
Given [tex]\(n = 5\)[/tex]:
[tex]\[ S_5 = 800 \frac{1 - 2^5}{1 - 2} = 800 \frac{1 - 32}{-1} = 800 \frac{-31}{-1} = 800 \times 31 = 24,800 \][/tex]
Therefore, the sum of the first five terms is [tex]\(24,800\)[/tex].
In conclusion, the answers to the question parts are as follows:
[tex]\[ \begin{align*} (a) & \quad 5.0 \\ (b) & \quad 2,500, 5,000, 7,500, 10,000 \\ (c) & \quad x = 27 \\ (d) & \quad 24,800 \end{align*} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.