IDNLearn.com provides a seamless experience for finding and sharing answers. Ask your questions and receive reliable and comprehensive answers from our dedicated community of professionals.

Use Lagrange multipliers to find the maximum or minimum values of the function subject to the given constraint. (If an answer does not exist, enter DNE.)

[tex]\[ f(x, y) = x^4 + y^4 \][/tex]
[tex]\[ x^2 + y^2 = 18 \][/tex]

Maximum: [tex]$\square$[/tex]

Minimum: [tex]$\square$[/tex]


Sagot :

To find the maximum and minimum values of the function [tex]\( f(x, y) = x^4 + y^4 \)[/tex] subject to the constraint [tex]\( g(x, y) = x^2 + y^2 - 18 = 0 \)[/tex], we use the method of Lagrange multipliers. Let's go through the steps of this method in detail:

1. Define the Lagrangian Function:
The Lagrangian function [tex]\( \mathcal{L}(x, y, \lambda) \)[/tex] is defined as:
[tex]\[ \mathcal{L}(x, y, \lambda) = f(x, y) - \lambda (g(x, y)) \][/tex]
where [tex]\( \lambda \)[/tex] is the Lagrange multiplier.

2. Formulate the System of Equations:
From the Lagrangian, we derive the following partial derivatives:
[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 4x^3 - \lambda (2x) = 0 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 4y^3 - \lambda (2y) = 0 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = x^2 + y^2 - 18 = 0 \][/tex]
This gives us the system of equations to solve:
[tex]\[ 4x^3 - 2\lambda x = 0 \quad (1) \][/tex]
[tex]\[ 4y^3 - 2\lambda y = 0 \quad (2) \][/tex]
[tex]\[ x^2 + y^2 - 18 = 0 \quad (3) \][/tex]

3. Solve the Gradient Equations:
From equations (1) and (2), assuming [tex]\( x \neq 0 \)[/tex] and [tex]\( y \neq 0 \)[/tex], we can divide by [tex]\( x \)[/tex] and [tex]\( y \)[/tex] respectively:
[tex]\[ 4x^2 = 2\lambda \quad \Rightarrow \quad \lambda = 2x^2 \][/tex]
[tex]\[ 4y^2 = 2\lambda \quad \Rightarrow \quad \lambda = 2y^2 \][/tex]
So, we have [tex]\( 2x^2 = 2y^2 \)[/tex], which simplifies to:
[tex]\[ x^2 = y^2 \][/tex]
This means [tex]\( y = x \)[/tex] or [tex]\( y = -x \)[/tex].

4. Consider each case separately:

- Case 1: [tex]\( y = x \)[/tex]
Substituting into the constraint [tex]\( x^2 + y^2 = 18 \)[/tex], we get:
[tex]\[ x^2 + x^2 = 18 \quad \Rightarrow \quad 2x^2 = 18 \quad \Rightarrow \quad x^2 = 9 \quad \Rightarrow \quad x = \pm 3 \][/tex]
Therefore, the pairs are [tex]\((3, 3)\)[/tex] and [tex]\((-3, -3)\)[/tex].

- Case 2: [tex]\( y = -x \)[/tex]
Substituting into the constraint [tex]\( x^2 + y^2 = 18 \)[/tex], we get:
[tex]\[ x^2 + (-x)^2 = 18 \quad \Rightarrow \quad x^2 + x^2 = 18 \quad \Rightarrow \quad 2x^2 = 18 \quad \Rightarrow \quad x^2 = 9 \quad \Rightarrow \quad x = \pm 3 \][/tex]
Therefore, the pairs are [tex]\((3, -3)\)[/tex] and [tex]\((-3, 3)\)[/tex].

5. Evaluate the Function at Each Point:
- At [tex]\((3, 3)\)[/tex] and [tex]\((-3, -3)\)[/tex]:
[tex]\[ f(3, 3) = 3^4 + 3^4 = 81 + 81 = 162 \][/tex]
- At [tex]\((3, -3)\)[/tex] and [tex]\((-3, 3)\)[/tex]:
[tex]\[ f(3, -3) = 3^4 + (-3)^4 = 81 + 81 = 162 \][/tex]

6. Additional Critical Points:
For [tex]\((0, y)\)[/tex] and [tex]\((x, 0)\)[/tex], setting [tex]\(\lambda \)[/tex] consistent with the derivations:
- When [tex]\( x = 0\)[/tex]: [tex]\( y = \pm 3\sqrt{2} \)[/tex]
- When [tex]\( y = 0\)[/tex]: [tex]\( x = \pm 3\sqrt{2} \)[/tex]

Evaluating these points:
- At [tex]\((0, 3\sqrt{2})\)[/tex] and [tex]\((0, -3\sqrt{2})\)[/tex]:
[tex]\[ f(0, 3\sqrt{2}) = (3\sqrt{2})^4 = 81 \cdot 2 = 162 \][/tex]
- At [tex]\((3\sqrt{2}, 0)\)[/tex] and [tex]\((-3\sqrt{2}, 0)\)[/tex]:
[tex]\[ f(3\sqrt{2}, 0) = (3\sqrt{2})^4 = 81 \cdot 2 = 162 \][/tex]

Finally, comparing all the values obtained, we conclude:
- The maximum value of [tex]\( f(x, y) \)[/tex] subject to the constraint is [tex]\( 324 \)[/tex].
- The minimum value of [tex]\( f(x, y) \)[/tex] subject to the constraint is [tex]\( 162 \)[/tex].

Therefore:
[tex]\[ \text{maximum } = 324 \][/tex]
[tex]\[ \text{minimum } = 162 \][/tex]