Connect with a global community of experts on IDNLearn.com. Ask anything and get well-informed, reliable answers from our knowledgeable community members.

Use Lagrange multipliers to find the maximum or minimum values of the function subject to the given constraint. (If an answer does not exist, enter DNE.)

[tex]\[ f(x, y) = x^4 + y^4 \][/tex]
[tex]\[ x^2 + y^2 = 18 \][/tex]

Maximum: [tex]$\square$[/tex]

Minimum: [tex]$\square$[/tex]


Sagot :

To find the maximum and minimum values of the function [tex]\( f(x, y) = x^4 + y^4 \)[/tex] subject to the constraint [tex]\( g(x, y) = x^2 + y^2 - 18 = 0 \)[/tex], we use the method of Lagrange multipliers. Let's go through the steps of this method in detail:

1. Define the Lagrangian Function:
The Lagrangian function [tex]\( \mathcal{L}(x, y, \lambda) \)[/tex] is defined as:
[tex]\[ \mathcal{L}(x, y, \lambda) = f(x, y) - \lambda (g(x, y)) \][/tex]
where [tex]\( \lambda \)[/tex] is the Lagrange multiplier.

2. Formulate the System of Equations:
From the Lagrangian, we derive the following partial derivatives:
[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 4x^3 - \lambda (2x) = 0 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 4y^3 - \lambda (2y) = 0 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = x^2 + y^2 - 18 = 0 \][/tex]
This gives us the system of equations to solve:
[tex]\[ 4x^3 - 2\lambda x = 0 \quad (1) \][/tex]
[tex]\[ 4y^3 - 2\lambda y = 0 \quad (2) \][/tex]
[tex]\[ x^2 + y^2 - 18 = 0 \quad (3) \][/tex]

3. Solve the Gradient Equations:
From equations (1) and (2), assuming [tex]\( x \neq 0 \)[/tex] and [tex]\( y \neq 0 \)[/tex], we can divide by [tex]\( x \)[/tex] and [tex]\( y \)[/tex] respectively:
[tex]\[ 4x^2 = 2\lambda \quad \Rightarrow \quad \lambda = 2x^2 \][/tex]
[tex]\[ 4y^2 = 2\lambda \quad \Rightarrow \quad \lambda = 2y^2 \][/tex]
So, we have [tex]\( 2x^2 = 2y^2 \)[/tex], which simplifies to:
[tex]\[ x^2 = y^2 \][/tex]
This means [tex]\( y = x \)[/tex] or [tex]\( y = -x \)[/tex].

4. Consider each case separately:

- Case 1: [tex]\( y = x \)[/tex]
Substituting into the constraint [tex]\( x^2 + y^2 = 18 \)[/tex], we get:
[tex]\[ x^2 + x^2 = 18 \quad \Rightarrow \quad 2x^2 = 18 \quad \Rightarrow \quad x^2 = 9 \quad \Rightarrow \quad x = \pm 3 \][/tex]
Therefore, the pairs are [tex]\((3, 3)\)[/tex] and [tex]\((-3, -3)\)[/tex].

- Case 2: [tex]\( y = -x \)[/tex]
Substituting into the constraint [tex]\( x^2 + y^2 = 18 \)[/tex], we get:
[tex]\[ x^2 + (-x)^2 = 18 \quad \Rightarrow \quad x^2 + x^2 = 18 \quad \Rightarrow \quad 2x^2 = 18 \quad \Rightarrow \quad x^2 = 9 \quad \Rightarrow \quad x = \pm 3 \][/tex]
Therefore, the pairs are [tex]\((3, -3)\)[/tex] and [tex]\((-3, 3)\)[/tex].

5. Evaluate the Function at Each Point:
- At [tex]\((3, 3)\)[/tex] and [tex]\((-3, -3)\)[/tex]:
[tex]\[ f(3, 3) = 3^4 + 3^4 = 81 + 81 = 162 \][/tex]
- At [tex]\((3, -3)\)[/tex] and [tex]\((-3, 3)\)[/tex]:
[tex]\[ f(3, -3) = 3^4 + (-3)^4 = 81 + 81 = 162 \][/tex]

6. Additional Critical Points:
For [tex]\((0, y)\)[/tex] and [tex]\((x, 0)\)[/tex], setting [tex]\(\lambda \)[/tex] consistent with the derivations:
- When [tex]\( x = 0\)[/tex]: [tex]\( y = \pm 3\sqrt{2} \)[/tex]
- When [tex]\( y = 0\)[/tex]: [tex]\( x = \pm 3\sqrt{2} \)[/tex]

Evaluating these points:
- At [tex]\((0, 3\sqrt{2})\)[/tex] and [tex]\((0, -3\sqrt{2})\)[/tex]:
[tex]\[ f(0, 3\sqrt{2}) = (3\sqrt{2})^4 = 81 \cdot 2 = 162 \][/tex]
- At [tex]\((3\sqrt{2}, 0)\)[/tex] and [tex]\((-3\sqrt{2}, 0)\)[/tex]:
[tex]\[ f(3\sqrt{2}, 0) = (3\sqrt{2})^4 = 81 \cdot 2 = 162 \][/tex]

Finally, comparing all the values obtained, we conclude:
- The maximum value of [tex]\( f(x, y) \)[/tex] subject to the constraint is [tex]\( 324 \)[/tex].
- The minimum value of [tex]\( f(x, y) \)[/tex] subject to the constraint is [tex]\( 162 \)[/tex].

Therefore:
[tex]\[ \text{maximum } = 324 \][/tex]
[tex]\[ \text{minimum } = 162 \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com is your go-to source for dependable answers. Thank you for visiting, and we hope to assist you again.