For all your questions, big or small, IDNLearn.com has the answers you need. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
To determine the maximum and minimum values of the function [tex]\( f(x, y, z) = 6x + 6y + 10z \)[/tex] subject to the constraint [tex]\( g(x, y, z) = x^2 + y^2 + z^2 - 43 = 0 \)[/tex] using Lagrange multipliers, we follow these steps:
1. Define the Lagrangian Function:
The Lagrangian function [tex]\( \mathcal{L} \)[/tex] is given by:
[tex]\[ \mathcal{L}(x, y, z, \lambda) = f(x, y, z) + \lambda g(x, y, z) \][/tex]
Substituting our given functions:
[tex]\[ \mathcal{L}(x, y, z, \lambda) = 6x + 6y + 10z + \lambda (x^2 + y^2 + z^2 - 43) \][/tex]
2. Compute the Partial Derivatives:
Compute the partial derivatives of [tex]\( \mathcal{L} \)[/tex] with respect to [tex]\( x \)[/tex], [tex]\( y \)[/tex], [tex]\( z \)[/tex], and [tex]\( \lambda \)[/tex] and set them to zero to find the critical points.
[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 6 + 2\lambda x = 0 \quad (1) \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 6 + 2\lambda y = 0 \quad (2) \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial z} = 10 + 2\lambda z = 0 \quad (3) \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = x^2 + y^2 + z^2 - 43 = 0 \quad (4) \][/tex]
3. Solve the System of Equations:
From equations (1), (2), and (3), we express [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] in terms of [tex]\( \lambda \)[/tex]:
[tex]\[ 6 + 2\lambda x = 0 \implies x = -\frac{3}{\lambda} \quad (5) \][/tex]
[tex]\[ 6 + 2\lambda y = 0 \implies y = -\frac{3}{\lambda} \quad (6) \][/tex]
[tex]\[ 10 + 2\lambda z = 0 \implies z = -\frac{5}{\lambda} \quad (7) \][/tex]
Substitute equations (5), (6), and (7) into the constraint equation (4):
[tex]\[ \left(-\frac{3}{\lambda}\right)^2 + \left(-\frac{3}{\lambda}\right)^2 + \left(-\frac{5}{\lambda}\right)^2 = 43 \][/tex]
Simplifying:
[tex]\[ \frac{9}{\lambda^2} + \frac{9}{\lambda^2} + \frac{25}{\lambda^2} = 43 \][/tex]
[tex]\[ \frac{43}{\lambda^2} = 43 \][/tex]
[tex]\[ \lambda^2 = 1 \implies \lambda = \pm 1 \][/tex]
4. Find the corresponding points [tex]\((x, y, z)\)[/tex]:
For [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ x = -\frac{3}{1} = -3, \quad y = -3, \quad z = -5 \][/tex]
For [tex]\( \lambda = -1 \)[/tex]:
[tex]\[ x = -\frac{3}{-1} = 3, \quad y = 3, \quad z = 5 \][/tex]
5. Evaluate [tex]\( f(x, y, z) \)[/tex] at the critical points:
- For [tex]\( (x, y, z) = (-3, -3, -5) \)[/tex]:
[tex]\[ f(-3, -3, -5) = 6(-3) + 6(-3) + 10(-5) = -18 - 18 - 50 = -86 \][/tex]
- For [tex]\( (x, y, z) = (3, 3, 5) \)[/tex]:
[tex]\[ f(3, 3, 5) = 6(3) + 6(3) + 10(5) = 18 + 18 + 50 = 86 \][/tex]
6. Conclusion:
The maximum value of the function [tex]\( f(x, y, z) \)[/tex] subject to the given constraint is [tex]\( 86 \)[/tex], and the minimum value is [tex]\( -86 \)[/tex].
[tex]\[ \text{maximum} = 86 \][/tex]
[tex]\[ \text{minimum} = -86 \][/tex]
1. Define the Lagrangian Function:
The Lagrangian function [tex]\( \mathcal{L} \)[/tex] is given by:
[tex]\[ \mathcal{L}(x, y, z, \lambda) = f(x, y, z) + \lambda g(x, y, z) \][/tex]
Substituting our given functions:
[tex]\[ \mathcal{L}(x, y, z, \lambda) = 6x + 6y + 10z + \lambda (x^2 + y^2 + z^2 - 43) \][/tex]
2. Compute the Partial Derivatives:
Compute the partial derivatives of [tex]\( \mathcal{L} \)[/tex] with respect to [tex]\( x \)[/tex], [tex]\( y \)[/tex], [tex]\( z \)[/tex], and [tex]\( \lambda \)[/tex] and set them to zero to find the critical points.
[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 6 + 2\lambda x = 0 \quad (1) \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 6 + 2\lambda y = 0 \quad (2) \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial z} = 10 + 2\lambda z = 0 \quad (3) \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = x^2 + y^2 + z^2 - 43 = 0 \quad (4) \][/tex]
3. Solve the System of Equations:
From equations (1), (2), and (3), we express [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] in terms of [tex]\( \lambda \)[/tex]:
[tex]\[ 6 + 2\lambda x = 0 \implies x = -\frac{3}{\lambda} \quad (5) \][/tex]
[tex]\[ 6 + 2\lambda y = 0 \implies y = -\frac{3}{\lambda} \quad (6) \][/tex]
[tex]\[ 10 + 2\lambda z = 0 \implies z = -\frac{5}{\lambda} \quad (7) \][/tex]
Substitute equations (5), (6), and (7) into the constraint equation (4):
[tex]\[ \left(-\frac{3}{\lambda}\right)^2 + \left(-\frac{3}{\lambda}\right)^2 + \left(-\frac{5}{\lambda}\right)^2 = 43 \][/tex]
Simplifying:
[tex]\[ \frac{9}{\lambda^2} + \frac{9}{\lambda^2} + \frac{25}{\lambda^2} = 43 \][/tex]
[tex]\[ \frac{43}{\lambda^2} = 43 \][/tex]
[tex]\[ \lambda^2 = 1 \implies \lambda = \pm 1 \][/tex]
4. Find the corresponding points [tex]\((x, y, z)\)[/tex]:
For [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ x = -\frac{3}{1} = -3, \quad y = -3, \quad z = -5 \][/tex]
For [tex]\( \lambda = -1 \)[/tex]:
[tex]\[ x = -\frac{3}{-1} = 3, \quad y = 3, \quad z = 5 \][/tex]
5. Evaluate [tex]\( f(x, y, z) \)[/tex] at the critical points:
- For [tex]\( (x, y, z) = (-3, -3, -5) \)[/tex]:
[tex]\[ f(-3, -3, -5) = 6(-3) + 6(-3) + 10(-5) = -18 - 18 - 50 = -86 \][/tex]
- For [tex]\( (x, y, z) = (3, 3, 5) \)[/tex]:
[tex]\[ f(3, 3, 5) = 6(3) + 6(3) + 10(5) = 18 + 18 + 50 = 86 \][/tex]
6. Conclusion:
The maximum value of the function [tex]\( f(x, y, z) \)[/tex] subject to the given constraint is [tex]\( 86 \)[/tex], and the minimum value is [tex]\( -86 \)[/tex].
[tex]\[ \text{maximum} = 86 \][/tex]
[tex]\[ \text{minimum} = -86 \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.