Join the growing community of curious minds on IDNLearn.com and get the answers you need. Get the information you need from our community of experts, who provide detailed and trustworthy answers.

Use Lagrange multipliers to find the maximum or minimum values of the function subject to the given constraint. (If an answer does not exist, enter DNE.)

[tex]\[
f(x, y, z) = 6x + 6y + 10z \quad \text{subject to} \quad x^2 + y^2 + z^2 = 43
\][/tex]

Maximum: [tex]\(\square\)[/tex]

Minimum: [tex]\(\square\)[/tex]

Additional Materials:
[tex]\(\square\)[/tex] eBook


Sagot :

To determine the maximum and minimum values of the function [tex]\( f(x, y, z) = 6x + 6y + 10z \)[/tex] subject to the constraint [tex]\( g(x, y, z) = x^2 + y^2 + z^2 - 43 = 0 \)[/tex] using Lagrange multipliers, we follow these steps:

1. Define the Lagrangian Function:

The Lagrangian function [tex]\( \mathcal{L} \)[/tex] is given by:
[tex]\[ \mathcal{L}(x, y, z, \lambda) = f(x, y, z) + \lambda g(x, y, z) \][/tex]
Substituting our given functions:
[tex]\[ \mathcal{L}(x, y, z, \lambda) = 6x + 6y + 10z + \lambda (x^2 + y^2 + z^2 - 43) \][/tex]

2. Compute the Partial Derivatives:

Compute the partial derivatives of [tex]\( \mathcal{L} \)[/tex] with respect to [tex]\( x \)[/tex], [tex]\( y \)[/tex], [tex]\( z \)[/tex], and [tex]\( \lambda \)[/tex] and set them to zero to find the critical points.

[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 6 + 2\lambda x = 0 \quad (1) \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 6 + 2\lambda y = 0 \quad (2) \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial z} = 10 + 2\lambda z = 0 \quad (3) \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = x^2 + y^2 + z^2 - 43 = 0 \quad (4) \][/tex]

3. Solve the System of Equations:

From equations (1), (2), and (3), we express [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] in terms of [tex]\( \lambda \)[/tex]:

[tex]\[ 6 + 2\lambda x = 0 \implies x = -\frac{3}{\lambda} \quad (5) \][/tex]
[tex]\[ 6 + 2\lambda y = 0 \implies y = -\frac{3}{\lambda} \quad (6) \][/tex]
[tex]\[ 10 + 2\lambda z = 0 \implies z = -\frac{5}{\lambda} \quad (7) \][/tex]

Substitute equations (5), (6), and (7) into the constraint equation (4):

[tex]\[ \left(-\frac{3}{\lambda}\right)^2 + \left(-\frac{3}{\lambda}\right)^2 + \left(-\frac{5}{\lambda}\right)^2 = 43 \][/tex]
Simplifying:
[tex]\[ \frac{9}{\lambda^2} + \frac{9}{\lambda^2} + \frac{25}{\lambda^2} = 43 \][/tex]
[tex]\[ \frac{43}{\lambda^2} = 43 \][/tex]
[tex]\[ \lambda^2 = 1 \implies \lambda = \pm 1 \][/tex]

4. Find the corresponding points [tex]\((x, y, z)\)[/tex]:

For [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ x = -\frac{3}{1} = -3, \quad y = -3, \quad z = -5 \][/tex]

For [tex]\( \lambda = -1 \)[/tex]:
[tex]\[ x = -\frac{3}{-1} = 3, \quad y = 3, \quad z = 5 \][/tex]

5. Evaluate [tex]\( f(x, y, z) \)[/tex] at the critical points:

- For [tex]\( (x, y, z) = (-3, -3, -5) \)[/tex]:
[tex]\[ f(-3, -3, -5) = 6(-3) + 6(-3) + 10(-5) = -18 - 18 - 50 = -86 \][/tex]

- For [tex]\( (x, y, z) = (3, 3, 5) \)[/tex]:
[tex]\[ f(3, 3, 5) = 6(3) + 6(3) + 10(5) = 18 + 18 + 50 = 86 \][/tex]

6. Conclusion:

The maximum value of the function [tex]\( f(x, y, z) \)[/tex] subject to the given constraint is [tex]\( 86 \)[/tex], and the minimum value is [tex]\( -86 \)[/tex].

[tex]\[ \text{maximum} = 86 \][/tex]
[tex]\[ \text{minimum} = -86 \][/tex]