Join the IDNLearn.com community and get your questions answered by knowledgeable individuals. Find the answers you need quickly and accurately with help from our knowledgeable and dedicated community members.
Sagot :
To use the method of Lagrange multipliers to find the maximum and minimum values of the function [tex]\( f(x, y, z) = 2x + 2y + z \)[/tex] subject to the constraint [tex]\( g(x, y, z) = x^2 + y^2 + z^2 - 9 = 0 \)[/tex], we follow these steps:
1. Set up the Lagrange function:
Define the Lagrangian function [tex]\( \mathcal{L}(x, y, z, \lambda) = f(x, y, z) - \lambda \cdot g(x, y, z) \)[/tex]. Therefore,
[tex]\[ \mathcal{L}(x, y, z, \lambda) = 2x + 2y + z - \lambda (x^2 + y^2 + z^2 - 9). \][/tex]
2. Compute the partial derivatives:
We need to find the partial derivatives of [tex]\( \mathcal{L} \)[/tex] with respect to [tex]\( x \)[/tex], [tex]\( y \)[/tex], [tex]\( z \)[/tex], and [tex]\( \lambda \)[/tex]:
[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 2 - 2 \lambda x = 0 \quad \Rightarrow \quad \lambda x = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 2 - 2 \lambda y = 0 \quad \Rightarrow \quad \lambda y = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial z} = 1 - 2 \lambda z = 0 \quad \Rightarrow \quad \lambda z = \frac{1}{2} \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = - (x^2 + y^2 + z^2 - 9) = 0 \quad \Rightarrow \quad x^2 + y^2 + z^2 = 9 \][/tex]
3. Solve the system of equations:
From the equations derived from the partial derivatives, we have:
[tex]\[ \lambda x = 1, \quad \lambda y = 1, \quad \lambda z = \frac{1}{2} \][/tex]
This implies:
[tex]\[ x = \frac{1}{\lambda}, \quad y = \frac{1}{\lambda}, \quad z = \frac{1}{2\lambda} \][/tex]
Substitute these into the constraint [tex]\( x^2 + y^2 + z^2 = 9 \)[/tex]:
[tex]\[ \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{2\lambda} \right)^2 = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} + \frac{1}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{2}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{8}{4\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} = 1 \][/tex]
[tex]\[ \lambda^2 = 1 \quad \Rightarrow \quad \lambda = \pm 1 \][/tex]
For [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ x = \frac{1}{1} = 1, \quad y = \frac{1}{1} = 1, \quad z = \frac{1}{2} = \frac{1}{2} \][/tex]
This gives the point [tex]\( (1, 1, \frac{1}{2}) \)[/tex].
For [tex]\( \lambda = -1 \)[/tex]:
[tex]\[ x = \frac{1}{-1} = -1, \quad y = \frac{1}{-1} = -1, \quad z = \frac{1}{2 \cdot -1} = -\frac{1}{2} \][/tex]
This gives the point [tex]\( (-1, -1, -\frac{1}{2}) \)[/tex].
4. Evaluate [tex]\( f(x, y, z) \)[/tex] at the critical points:
[tex]\[ f(1, 1, \frac{1}{2}) = 2 \cdot 1 + 2 \cdot 1 + \frac{1}{2} = 4.5 \][/tex]
[tex]\[ f(-1, -1, -\frac{1}{2}) = 2 \cdot (-1) + 2 \cdot (-1) + (-\frac{1}{2}) = -4.5 \][/tex]
So, the maximum value is [tex]\( \boxed{4.5} \)[/tex], and the minimum value is [tex]\( \boxed{-4.5} \)[/tex].
1. Set up the Lagrange function:
Define the Lagrangian function [tex]\( \mathcal{L}(x, y, z, \lambda) = f(x, y, z) - \lambda \cdot g(x, y, z) \)[/tex]. Therefore,
[tex]\[ \mathcal{L}(x, y, z, \lambda) = 2x + 2y + z - \lambda (x^2 + y^2 + z^2 - 9). \][/tex]
2. Compute the partial derivatives:
We need to find the partial derivatives of [tex]\( \mathcal{L} \)[/tex] with respect to [tex]\( x \)[/tex], [tex]\( y \)[/tex], [tex]\( z \)[/tex], and [tex]\( \lambda \)[/tex]:
[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 2 - 2 \lambda x = 0 \quad \Rightarrow \quad \lambda x = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 2 - 2 \lambda y = 0 \quad \Rightarrow \quad \lambda y = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial z} = 1 - 2 \lambda z = 0 \quad \Rightarrow \quad \lambda z = \frac{1}{2} \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = - (x^2 + y^2 + z^2 - 9) = 0 \quad \Rightarrow \quad x^2 + y^2 + z^2 = 9 \][/tex]
3. Solve the system of equations:
From the equations derived from the partial derivatives, we have:
[tex]\[ \lambda x = 1, \quad \lambda y = 1, \quad \lambda z = \frac{1}{2} \][/tex]
This implies:
[tex]\[ x = \frac{1}{\lambda}, \quad y = \frac{1}{\lambda}, \quad z = \frac{1}{2\lambda} \][/tex]
Substitute these into the constraint [tex]\( x^2 + y^2 + z^2 = 9 \)[/tex]:
[tex]\[ \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{2\lambda} \right)^2 = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} + \frac{1}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{2}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{8}{4\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} = 1 \][/tex]
[tex]\[ \lambda^2 = 1 \quad \Rightarrow \quad \lambda = \pm 1 \][/tex]
For [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ x = \frac{1}{1} = 1, \quad y = \frac{1}{1} = 1, \quad z = \frac{1}{2} = \frac{1}{2} \][/tex]
This gives the point [tex]\( (1, 1, \frac{1}{2}) \)[/tex].
For [tex]\( \lambda = -1 \)[/tex]:
[tex]\[ x = \frac{1}{-1} = -1, \quad y = \frac{1}{-1} = -1, \quad z = \frac{1}{2 \cdot -1} = -\frac{1}{2} \][/tex]
This gives the point [tex]\( (-1, -1, -\frac{1}{2}) \)[/tex].
4. Evaluate [tex]\( f(x, y, z) \)[/tex] at the critical points:
[tex]\[ f(1, 1, \frac{1}{2}) = 2 \cdot 1 + 2 \cdot 1 + \frac{1}{2} = 4.5 \][/tex]
[tex]\[ f(-1, -1, -\frac{1}{2}) = 2 \cdot (-1) + 2 \cdot (-1) + (-\frac{1}{2}) = -4.5 \][/tex]
So, the maximum value is [tex]\( \boxed{4.5} \)[/tex], and the minimum value is [tex]\( \boxed{-4.5} \)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.