IDNLearn.com provides a collaborative environment for finding and sharing answers. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
To use the method of Lagrange multipliers to find the maximum and minimum values of the function [tex]\( f(x, y, z) = 2x + 2y + z \)[/tex] subject to the constraint [tex]\( g(x, y, z) = x^2 + y^2 + z^2 - 9 = 0 \)[/tex], we follow these steps:
1. Set up the Lagrange function:
Define the Lagrangian function [tex]\( \mathcal{L}(x, y, z, \lambda) = f(x, y, z) - \lambda \cdot g(x, y, z) \)[/tex]. Therefore,
[tex]\[ \mathcal{L}(x, y, z, \lambda) = 2x + 2y + z - \lambda (x^2 + y^2 + z^2 - 9). \][/tex]
2. Compute the partial derivatives:
We need to find the partial derivatives of [tex]\( \mathcal{L} \)[/tex] with respect to [tex]\( x \)[/tex], [tex]\( y \)[/tex], [tex]\( z \)[/tex], and [tex]\( \lambda \)[/tex]:
[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 2 - 2 \lambda x = 0 \quad \Rightarrow \quad \lambda x = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 2 - 2 \lambda y = 0 \quad \Rightarrow \quad \lambda y = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial z} = 1 - 2 \lambda z = 0 \quad \Rightarrow \quad \lambda z = \frac{1}{2} \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = - (x^2 + y^2 + z^2 - 9) = 0 \quad \Rightarrow \quad x^2 + y^2 + z^2 = 9 \][/tex]
3. Solve the system of equations:
From the equations derived from the partial derivatives, we have:
[tex]\[ \lambda x = 1, \quad \lambda y = 1, \quad \lambda z = \frac{1}{2} \][/tex]
This implies:
[tex]\[ x = \frac{1}{\lambda}, \quad y = \frac{1}{\lambda}, \quad z = \frac{1}{2\lambda} \][/tex]
Substitute these into the constraint [tex]\( x^2 + y^2 + z^2 = 9 \)[/tex]:
[tex]\[ \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{2\lambda} \right)^2 = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} + \frac{1}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{2}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{8}{4\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} = 1 \][/tex]
[tex]\[ \lambda^2 = 1 \quad \Rightarrow \quad \lambda = \pm 1 \][/tex]
For [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ x = \frac{1}{1} = 1, \quad y = \frac{1}{1} = 1, \quad z = \frac{1}{2} = \frac{1}{2} \][/tex]
This gives the point [tex]\( (1, 1, \frac{1}{2}) \)[/tex].
For [tex]\( \lambda = -1 \)[/tex]:
[tex]\[ x = \frac{1}{-1} = -1, \quad y = \frac{1}{-1} = -1, \quad z = \frac{1}{2 \cdot -1} = -\frac{1}{2} \][/tex]
This gives the point [tex]\( (-1, -1, -\frac{1}{2}) \)[/tex].
4. Evaluate [tex]\( f(x, y, z) \)[/tex] at the critical points:
[tex]\[ f(1, 1, \frac{1}{2}) = 2 \cdot 1 + 2 \cdot 1 + \frac{1}{2} = 4.5 \][/tex]
[tex]\[ f(-1, -1, -\frac{1}{2}) = 2 \cdot (-1) + 2 \cdot (-1) + (-\frac{1}{2}) = -4.5 \][/tex]
So, the maximum value is [tex]\( \boxed{4.5} \)[/tex], and the minimum value is [tex]\( \boxed{-4.5} \)[/tex].
1. Set up the Lagrange function:
Define the Lagrangian function [tex]\( \mathcal{L}(x, y, z, \lambda) = f(x, y, z) - \lambda \cdot g(x, y, z) \)[/tex]. Therefore,
[tex]\[ \mathcal{L}(x, y, z, \lambda) = 2x + 2y + z - \lambda (x^2 + y^2 + z^2 - 9). \][/tex]
2. Compute the partial derivatives:
We need to find the partial derivatives of [tex]\( \mathcal{L} \)[/tex] with respect to [tex]\( x \)[/tex], [tex]\( y \)[/tex], [tex]\( z \)[/tex], and [tex]\( \lambda \)[/tex]:
[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 2 - 2 \lambda x = 0 \quad \Rightarrow \quad \lambda x = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 2 - 2 \lambda y = 0 \quad \Rightarrow \quad \lambda y = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial z} = 1 - 2 \lambda z = 0 \quad \Rightarrow \quad \lambda z = \frac{1}{2} \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = - (x^2 + y^2 + z^2 - 9) = 0 \quad \Rightarrow \quad x^2 + y^2 + z^2 = 9 \][/tex]
3. Solve the system of equations:
From the equations derived from the partial derivatives, we have:
[tex]\[ \lambda x = 1, \quad \lambda y = 1, \quad \lambda z = \frac{1}{2} \][/tex]
This implies:
[tex]\[ x = \frac{1}{\lambda}, \quad y = \frac{1}{\lambda}, \quad z = \frac{1}{2\lambda} \][/tex]
Substitute these into the constraint [tex]\( x^2 + y^2 + z^2 = 9 \)[/tex]:
[tex]\[ \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{2\lambda} \right)^2 = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} + \frac{1}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{2}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{8}{4\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} = 1 \][/tex]
[tex]\[ \lambda^2 = 1 \quad \Rightarrow \quad \lambda = \pm 1 \][/tex]
For [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ x = \frac{1}{1} = 1, \quad y = \frac{1}{1} = 1, \quad z = \frac{1}{2} = \frac{1}{2} \][/tex]
This gives the point [tex]\( (1, 1, \frac{1}{2}) \)[/tex].
For [tex]\( \lambda = -1 \)[/tex]:
[tex]\[ x = \frac{1}{-1} = -1, \quad y = \frac{1}{-1} = -1, \quad z = \frac{1}{2 \cdot -1} = -\frac{1}{2} \][/tex]
This gives the point [tex]\( (-1, -1, -\frac{1}{2}) \)[/tex].
4. Evaluate [tex]\( f(x, y, z) \)[/tex] at the critical points:
[tex]\[ f(1, 1, \frac{1}{2}) = 2 \cdot 1 + 2 \cdot 1 + \frac{1}{2} = 4.5 \][/tex]
[tex]\[ f(-1, -1, -\frac{1}{2}) = 2 \cdot (-1) + 2 \cdot (-1) + (-\frac{1}{2}) = -4.5 \][/tex]
So, the maximum value is [tex]\( \boxed{4.5} \)[/tex], and the minimum value is [tex]\( \boxed{-4.5} \)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.