Find accurate and reliable answers to your questions on IDNLearn.com. Get comprehensive and trustworthy answers to all your questions from our knowledgeable community members.
Sagot :
To use the method of Lagrange multipliers to find the maximum and minimum values of the function [tex]\( f(x, y, z) = 2x + 2y + z \)[/tex] subject to the constraint [tex]\( g(x, y, z) = x^2 + y^2 + z^2 - 9 = 0 \)[/tex], we follow these steps:
1. Set up the Lagrange function:
Define the Lagrangian function [tex]\( \mathcal{L}(x, y, z, \lambda) = f(x, y, z) - \lambda \cdot g(x, y, z) \)[/tex]. Therefore,
[tex]\[ \mathcal{L}(x, y, z, \lambda) = 2x + 2y + z - \lambda (x^2 + y^2 + z^2 - 9). \][/tex]
2. Compute the partial derivatives:
We need to find the partial derivatives of [tex]\( \mathcal{L} \)[/tex] with respect to [tex]\( x \)[/tex], [tex]\( y \)[/tex], [tex]\( z \)[/tex], and [tex]\( \lambda \)[/tex]:
[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 2 - 2 \lambda x = 0 \quad \Rightarrow \quad \lambda x = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 2 - 2 \lambda y = 0 \quad \Rightarrow \quad \lambda y = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial z} = 1 - 2 \lambda z = 0 \quad \Rightarrow \quad \lambda z = \frac{1}{2} \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = - (x^2 + y^2 + z^2 - 9) = 0 \quad \Rightarrow \quad x^2 + y^2 + z^2 = 9 \][/tex]
3. Solve the system of equations:
From the equations derived from the partial derivatives, we have:
[tex]\[ \lambda x = 1, \quad \lambda y = 1, \quad \lambda z = \frac{1}{2} \][/tex]
This implies:
[tex]\[ x = \frac{1}{\lambda}, \quad y = \frac{1}{\lambda}, \quad z = \frac{1}{2\lambda} \][/tex]
Substitute these into the constraint [tex]\( x^2 + y^2 + z^2 = 9 \)[/tex]:
[tex]\[ \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{2\lambda} \right)^2 = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} + \frac{1}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{2}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{8}{4\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} = 1 \][/tex]
[tex]\[ \lambda^2 = 1 \quad \Rightarrow \quad \lambda = \pm 1 \][/tex]
For [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ x = \frac{1}{1} = 1, \quad y = \frac{1}{1} = 1, \quad z = \frac{1}{2} = \frac{1}{2} \][/tex]
This gives the point [tex]\( (1, 1, \frac{1}{2}) \)[/tex].
For [tex]\( \lambda = -1 \)[/tex]:
[tex]\[ x = \frac{1}{-1} = -1, \quad y = \frac{1}{-1} = -1, \quad z = \frac{1}{2 \cdot -1} = -\frac{1}{2} \][/tex]
This gives the point [tex]\( (-1, -1, -\frac{1}{2}) \)[/tex].
4. Evaluate [tex]\( f(x, y, z) \)[/tex] at the critical points:
[tex]\[ f(1, 1, \frac{1}{2}) = 2 \cdot 1 + 2 \cdot 1 + \frac{1}{2} = 4.5 \][/tex]
[tex]\[ f(-1, -1, -\frac{1}{2}) = 2 \cdot (-1) + 2 \cdot (-1) + (-\frac{1}{2}) = -4.5 \][/tex]
So, the maximum value is [tex]\( \boxed{4.5} \)[/tex], and the minimum value is [tex]\( \boxed{-4.5} \)[/tex].
1. Set up the Lagrange function:
Define the Lagrangian function [tex]\( \mathcal{L}(x, y, z, \lambda) = f(x, y, z) - \lambda \cdot g(x, y, z) \)[/tex]. Therefore,
[tex]\[ \mathcal{L}(x, y, z, \lambda) = 2x + 2y + z - \lambda (x^2 + y^2 + z^2 - 9). \][/tex]
2. Compute the partial derivatives:
We need to find the partial derivatives of [tex]\( \mathcal{L} \)[/tex] with respect to [tex]\( x \)[/tex], [tex]\( y \)[/tex], [tex]\( z \)[/tex], and [tex]\( \lambda \)[/tex]:
[tex]\[ \frac{\partial \mathcal{L}}{\partial x} = 2 - 2 \lambda x = 0 \quad \Rightarrow \quad \lambda x = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial y} = 2 - 2 \lambda y = 0 \quad \Rightarrow \quad \lambda y = 1 \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial z} = 1 - 2 \lambda z = 0 \quad \Rightarrow \quad \lambda z = \frac{1}{2} \][/tex]
[tex]\[ \frac{\partial \mathcal{L}}{\partial \lambda} = - (x^2 + y^2 + z^2 - 9) = 0 \quad \Rightarrow \quad x^2 + y^2 + z^2 = 9 \][/tex]
3. Solve the system of equations:
From the equations derived from the partial derivatives, we have:
[tex]\[ \lambda x = 1, \quad \lambda y = 1, \quad \lambda z = \frac{1}{2} \][/tex]
This implies:
[tex]\[ x = \frac{1}{\lambda}, \quad y = \frac{1}{\lambda}, \quad z = \frac{1}{2\lambda} \][/tex]
Substitute these into the constraint [tex]\( x^2 + y^2 + z^2 = 9 \)[/tex]:
[tex]\[ \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{\lambda} \right)^2 + \left( \frac{1}{2\lambda} \right)^2 = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} + \frac{1}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{2}{\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{8}{4\lambda^2} + \frac{1}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{9}{4\lambda^2} = 9 \][/tex]
[tex]\[ \frac{1}{\lambda^2} = 1 \][/tex]
[tex]\[ \lambda^2 = 1 \quad \Rightarrow \quad \lambda = \pm 1 \][/tex]
For [tex]\( \lambda = 1 \)[/tex]:
[tex]\[ x = \frac{1}{1} = 1, \quad y = \frac{1}{1} = 1, \quad z = \frac{1}{2} = \frac{1}{2} \][/tex]
This gives the point [tex]\( (1, 1, \frac{1}{2}) \)[/tex].
For [tex]\( \lambda = -1 \)[/tex]:
[tex]\[ x = \frac{1}{-1} = -1, \quad y = \frac{1}{-1} = -1, \quad z = \frac{1}{2 \cdot -1} = -\frac{1}{2} \][/tex]
This gives the point [tex]\( (-1, -1, -\frac{1}{2}) \)[/tex].
4. Evaluate [tex]\( f(x, y, z) \)[/tex] at the critical points:
[tex]\[ f(1, 1, \frac{1}{2}) = 2 \cdot 1 + 2 \cdot 1 + \frac{1}{2} = 4.5 \][/tex]
[tex]\[ f(-1, -1, -\frac{1}{2}) = 2 \cdot (-1) + 2 \cdot (-1) + (-\frac{1}{2}) = -4.5 \][/tex]
So, the maximum value is [tex]\( \boxed{4.5} \)[/tex], and the minimum value is [tex]\( \boxed{-4.5} \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.