IDNLearn.com connects you with experts who provide accurate and reliable answers. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.
Sagot :
To find the relative minimum point of the function [tex]\( f(x) = \frac{x^3}{3} + \frac{5 x^2}{2} + 4 x + 3 \)[/tex], we will follow these steps:
1. Compute the first derivative [tex]\( f'(x) \)[/tex] to find the critical points.
2. Solve [tex]\( f'(x) = 0 \)[/tex] to find the values of [tex]\( x \)[/tex] where the critical points occur.
3. Compute the second derivative [tex]\( f''(x) \)[/tex] to determine the concavity of the function at the critical points.
4. Evaluate [tex]\( f''(x) \)[/tex] at the critical points to identify whether each critical point is a local minimum, maximum, or neither.
5. Determine the corresponding [tex]\( y \)[/tex]-coordinate for the local minimum point.
Let's proceed step-by-step:
### Step 1: Compute the First Derivative
First, compute the first derivative [tex]\( f'(x) \)[/tex] of the given function:
[tex]\[ f'(x) = \frac{d}{dx}\left( \frac{x^3}{3} + \frac{5 x^2}{2} + 4 x + 3 \right) \][/tex]
Using the power rule:
[tex]\[ f'(x) = x^2 + 5x + 4 \][/tex]
### Step 2: Solve [tex]\( f'(x) = 0 \)[/tex]
Set the first derivative equal to zero to find the critical points:
[tex]\[ x^2 + 5x + 4 = 0 \][/tex]
Factor the quadratic equation:
[tex]\[ (x + 4)(x + 1) = 0 \][/tex]
So, the critical points are:
[tex]\[ x = -4 \quad \text{and} \quad x = -1 \][/tex]
### Step 3: Compute the Second Derivative
Next, compute the second derivative [tex]\( f''(x) \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx}\left( x^2 + 5x + 4 \right) = 2x + 5 \][/tex]
### Step 4: Evaluate [tex]\( f''(x) \)[/tex] at the Critical Points
Evaluate the second derivative at each critical point to determine the nature of each critical point:
- For [tex]\( x = -4 \)[/tex]:
[tex]\[ f''(-4) = 2(-4) + 5 = -8 + 5 = -3 \][/tex]
Since [tex]\( f''(-4) < 0 \)[/tex], the function has a local maximum at [tex]\( x = -4 \)[/tex].
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ f''(-1) = 2(-1) + 5 = -2 + 5 = 3 \][/tex]
Since [tex]\( f''(-1) > 0 \)[/tex], the function has a local minimum at [tex]\( x = -1 \)[/tex].
### Step 5: Find the [tex]\( y \)[/tex]-coordinate of the Local Minimum
Evaluate the original function at [tex]\( x = -1 \)[/tex] to determine the corresponding [tex]\( y \)[/tex]-coordinate:
[tex]\[ f(-1) = \frac{(-1)^3}{3} + \frac{5(-1)^2}{2} + 4(-1) + 3 \][/tex]
Simplify the expression:
[tex]\[ f(-1) = \frac{-1}{3} + \frac{5}{2} - 4 + 3 \][/tex]
[tex]\[ f(-1) = -\frac{1}{3} + \frac{5}{2} - 1 \][/tex]
Convert to a common denominator (6):
[tex]\[ f(-1) = -\frac{2}{6} + \frac{15}{6} - \frac{6}{6} \][/tex]
[tex]\[ f(-1) = \frac{7}{6} \][/tex]
Therefore, the local minimum point is:
[tex]\[ \left( -1, \frac{7}{6} \right) \][/tex]
Hence, the correct answer is:
[tex]\[ \text{(B)} \left( -1, \frac{7}{6} \right) \][/tex]
1. Compute the first derivative [tex]\( f'(x) \)[/tex] to find the critical points.
2. Solve [tex]\( f'(x) = 0 \)[/tex] to find the values of [tex]\( x \)[/tex] where the critical points occur.
3. Compute the second derivative [tex]\( f''(x) \)[/tex] to determine the concavity of the function at the critical points.
4. Evaluate [tex]\( f''(x) \)[/tex] at the critical points to identify whether each critical point is a local minimum, maximum, or neither.
5. Determine the corresponding [tex]\( y \)[/tex]-coordinate for the local minimum point.
Let's proceed step-by-step:
### Step 1: Compute the First Derivative
First, compute the first derivative [tex]\( f'(x) \)[/tex] of the given function:
[tex]\[ f'(x) = \frac{d}{dx}\left( \frac{x^3}{3} + \frac{5 x^2}{2} + 4 x + 3 \right) \][/tex]
Using the power rule:
[tex]\[ f'(x) = x^2 + 5x + 4 \][/tex]
### Step 2: Solve [tex]\( f'(x) = 0 \)[/tex]
Set the first derivative equal to zero to find the critical points:
[tex]\[ x^2 + 5x + 4 = 0 \][/tex]
Factor the quadratic equation:
[tex]\[ (x + 4)(x + 1) = 0 \][/tex]
So, the critical points are:
[tex]\[ x = -4 \quad \text{and} \quad x = -1 \][/tex]
### Step 3: Compute the Second Derivative
Next, compute the second derivative [tex]\( f''(x) \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx}\left( x^2 + 5x + 4 \right) = 2x + 5 \][/tex]
### Step 4: Evaluate [tex]\( f''(x) \)[/tex] at the Critical Points
Evaluate the second derivative at each critical point to determine the nature of each critical point:
- For [tex]\( x = -4 \)[/tex]:
[tex]\[ f''(-4) = 2(-4) + 5 = -8 + 5 = -3 \][/tex]
Since [tex]\( f''(-4) < 0 \)[/tex], the function has a local maximum at [tex]\( x = -4 \)[/tex].
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ f''(-1) = 2(-1) + 5 = -2 + 5 = 3 \][/tex]
Since [tex]\( f''(-1) > 0 \)[/tex], the function has a local minimum at [tex]\( x = -1 \)[/tex].
### Step 5: Find the [tex]\( y \)[/tex]-coordinate of the Local Minimum
Evaluate the original function at [tex]\( x = -1 \)[/tex] to determine the corresponding [tex]\( y \)[/tex]-coordinate:
[tex]\[ f(-1) = \frac{(-1)^3}{3} + \frac{5(-1)^2}{2} + 4(-1) + 3 \][/tex]
Simplify the expression:
[tex]\[ f(-1) = \frac{-1}{3} + \frac{5}{2} - 4 + 3 \][/tex]
[tex]\[ f(-1) = -\frac{1}{3} + \frac{5}{2} - 1 \][/tex]
Convert to a common denominator (6):
[tex]\[ f(-1) = -\frac{2}{6} + \frac{15}{6} - \frac{6}{6} \][/tex]
[tex]\[ f(-1) = \frac{7}{6} \][/tex]
Therefore, the local minimum point is:
[tex]\[ \left( -1, \frac{7}{6} \right) \][/tex]
Hence, the correct answer is:
[tex]\[ \text{(B)} \left( -1, \frac{7}{6} \right) \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.