Find the best solutions to your problems with the help of IDNLearn.com's experts. Join our interactive Q&A platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
To determine the angle of projection and the time of flight for a body given the conditions that its horizontal range is three times the maximum height and its initial velocity is 30 m/s, we can follow these steps:
### 1. Given Values:
- Horizontal Range [tex]\( R \)[/tex] is three times the maximum height [tex]\( H \)[/tex]: [tex]\( R = 3H \)[/tex]
- Initial velocity [tex]\( v = 30 \)[/tex] m/s
### 2. Fundamental Equations:
- Horizontal Range (R):
[tex]\[ R = \frac{v^2 \sin(2\theta)}{g} \][/tex]
- Maximum Height (H):
[tex]\[ H = \frac{v^2 \sin^2(\theta)}{2g} \][/tex]
### 3. Relationship Between Range and Height:
We are given [tex]\( R = 3H \)[/tex]. Substituting the expressions for [tex]\( R \)[/tex] and [tex]\( H \)[/tex]:
[tex]\[ \frac{v^2 \sin(2\theta)}{g} = 3 \left(\frac{v^2 \sin^2(\theta)}{2g}\right) \][/tex]
### 4. Simplifying the Equation:
First, cancel the common terms ([tex]\( \frac{v^2}{g} \)[/tex]) on both sides:
[tex]\[ \sin(2\theta) = 3 \cdot \frac{\sin^2(\theta)}{2} \][/tex]
Then we know from trigonometric identities:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
So our equation becomes:
[tex]\[ 2 \sin(\theta) \cos(\theta) = \frac{3}{2} \sin^2(\theta) \][/tex]
Divide both sides by [tex]\( \sin(\theta) \)[/tex] (assuming [tex]\( \theta \)[/tex] is not zero):
[tex]\[ 2 \cos(\theta) = \frac{3}{2} \sin(\theta) \][/tex]
We rearrange to find [tex]\( \tan(\theta) \)[/tex]:
[tex]\[ \frac{\sin(\theta)}{\cos(\theta)} = \frac{4}{3} \][/tex]
[tex]\[ \tan(\theta) = \frac{4}{3} \][/tex]
### 5. Calculate the Angle of Projection:
To find [tex]\( \theta \)[/tex]:
[tex]\[ \theta = \tan^{-1} \left( \frac{4}{3} \right) \][/tex]
This calculates to:
[tex]\[ \theta \approx 53.13^\circ \][/tex]
### 6. Calculate the Time of Flight:
The formula for the time of flight [tex]\( T \)[/tex] is:
[tex]\[ T = \frac{2v \sin(\theta)}{g} \][/tex]
Given [tex]\( v = 30 \)[/tex] m/s, [tex]\( \theta \approx 53.13^\circ \)[/tex], and [tex]\( g \approx 9.8 \)[/tex] m/s²:
[tex]\[ \sin(53.13^\circ) \approx 0.8 \][/tex]
[tex]\[ T = \frac{2 \cdot 30 \cdot 0.8}{9.8} \][/tex]
[tex]\[ T \approx 4.90 \text{ seconds} \][/tex]
### Final Results:
- The angle of projection is approximately [tex]\( 53.13^\circ \)[/tex].
- The time of flight is approximately [tex]\( 4.90 \)[/tex] seconds.
### 1. Given Values:
- Horizontal Range [tex]\( R \)[/tex] is three times the maximum height [tex]\( H \)[/tex]: [tex]\( R = 3H \)[/tex]
- Initial velocity [tex]\( v = 30 \)[/tex] m/s
### 2. Fundamental Equations:
- Horizontal Range (R):
[tex]\[ R = \frac{v^2 \sin(2\theta)}{g} \][/tex]
- Maximum Height (H):
[tex]\[ H = \frac{v^2 \sin^2(\theta)}{2g} \][/tex]
### 3. Relationship Between Range and Height:
We are given [tex]\( R = 3H \)[/tex]. Substituting the expressions for [tex]\( R \)[/tex] and [tex]\( H \)[/tex]:
[tex]\[ \frac{v^2 \sin(2\theta)}{g} = 3 \left(\frac{v^2 \sin^2(\theta)}{2g}\right) \][/tex]
### 4. Simplifying the Equation:
First, cancel the common terms ([tex]\( \frac{v^2}{g} \)[/tex]) on both sides:
[tex]\[ \sin(2\theta) = 3 \cdot \frac{\sin^2(\theta)}{2} \][/tex]
Then we know from trigonometric identities:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
So our equation becomes:
[tex]\[ 2 \sin(\theta) \cos(\theta) = \frac{3}{2} \sin^2(\theta) \][/tex]
Divide both sides by [tex]\( \sin(\theta) \)[/tex] (assuming [tex]\( \theta \)[/tex] is not zero):
[tex]\[ 2 \cos(\theta) = \frac{3}{2} \sin(\theta) \][/tex]
We rearrange to find [tex]\( \tan(\theta) \)[/tex]:
[tex]\[ \frac{\sin(\theta)}{\cos(\theta)} = \frac{4}{3} \][/tex]
[tex]\[ \tan(\theta) = \frac{4}{3} \][/tex]
### 5. Calculate the Angle of Projection:
To find [tex]\( \theta \)[/tex]:
[tex]\[ \theta = \tan^{-1} \left( \frac{4}{3} \right) \][/tex]
This calculates to:
[tex]\[ \theta \approx 53.13^\circ \][/tex]
### 6. Calculate the Time of Flight:
The formula for the time of flight [tex]\( T \)[/tex] is:
[tex]\[ T = \frac{2v \sin(\theta)}{g} \][/tex]
Given [tex]\( v = 30 \)[/tex] m/s, [tex]\( \theta \approx 53.13^\circ \)[/tex], and [tex]\( g \approx 9.8 \)[/tex] m/s²:
[tex]\[ \sin(53.13^\circ) \approx 0.8 \][/tex]
[tex]\[ T = \frac{2 \cdot 30 \cdot 0.8}{9.8} \][/tex]
[tex]\[ T \approx 4.90 \text{ seconds} \][/tex]
### Final Results:
- The angle of projection is approximately [tex]\( 53.13^\circ \)[/tex].
- The time of flight is approximately [tex]\( 4.90 \)[/tex] seconds.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.