Get the most out of your questions with the extensive resources available on IDNLearn.com. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.
Sagot :
To evaluate the limit [tex]\(\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4}\)[/tex] using L'Hôpital's Rule, we follow these steps:
1. Check the form of the limit:
First, substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]\[ f(x) = x^2 + 2x - 3 \quad \text{and} \quad g(x) = x^2 + 3x - 4. \][/tex]
[tex]\[ f(1) = 1^2 + 2(1) - 3 = 1 + 2 - 3 = 0, \][/tex]
[tex]\[ g(1) = 1^2 + 3(1) - 4 = 1 + 3 - 4 = 0. \][/tex]
Since both the numerator and denominator evaluate to 0 at [tex]\( x = 1 \)[/tex], this is an indeterminate form [tex]\( \frac{0}{0} \)[/tex]. This suggests that L'Hôpital's Rule can be applied.
2. Differentiate numerator and denominator:
Differentiate the numerator [tex]\( f(x) = x^2 + 2x - 3 \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^2 + 2x - 3) = 2x + 2. \][/tex]
Differentiate the denominator [tex]\( g(x) = x^2 + 3x - 4 \)[/tex]:
[tex]\[ g'(x) = \frac{d}{dx}(x^2 + 3x - 4) = 2x + 3. \][/tex]
3. Apply L'Hôpital's Rule:
Substitute [tex]\( x = 1 \)[/tex] in the derivatives:
[tex]\[ \lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4} = \lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{2x + 2}{2x + 3}. \][/tex]
Now, substitute [tex]\( x = 1 \)[/tex] into the simplified expression:
[tex]\[ \frac{2(1) + 2}{2(1) + 3} = \frac{2 + 2}{2 + 3} = \frac{4}{5}. \][/tex]
4. Conclusion:
The evaluated limit is:
[tex]\[ \lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4} = \frac{4}{5}. \][/tex]
Hence, the limit [tex]\(\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4}\)[/tex] evaluates to [tex]\(\frac{4}{5}\)[/tex].
1. Check the form of the limit:
First, substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]\[ f(x) = x^2 + 2x - 3 \quad \text{and} \quad g(x) = x^2 + 3x - 4. \][/tex]
[tex]\[ f(1) = 1^2 + 2(1) - 3 = 1 + 2 - 3 = 0, \][/tex]
[tex]\[ g(1) = 1^2 + 3(1) - 4 = 1 + 3 - 4 = 0. \][/tex]
Since both the numerator and denominator evaluate to 0 at [tex]\( x = 1 \)[/tex], this is an indeterminate form [tex]\( \frac{0}{0} \)[/tex]. This suggests that L'Hôpital's Rule can be applied.
2. Differentiate numerator and denominator:
Differentiate the numerator [tex]\( f(x) = x^2 + 2x - 3 \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^2 + 2x - 3) = 2x + 2. \][/tex]
Differentiate the denominator [tex]\( g(x) = x^2 + 3x - 4 \)[/tex]:
[tex]\[ g'(x) = \frac{d}{dx}(x^2 + 3x - 4) = 2x + 3. \][/tex]
3. Apply L'Hôpital's Rule:
Substitute [tex]\( x = 1 \)[/tex] in the derivatives:
[tex]\[ \lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4} = \lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{2x + 2}{2x + 3}. \][/tex]
Now, substitute [tex]\( x = 1 \)[/tex] into the simplified expression:
[tex]\[ \frac{2(1) + 2}{2(1) + 3} = \frac{2 + 2}{2 + 3} = \frac{4}{5}. \][/tex]
4. Conclusion:
The evaluated limit is:
[tex]\[ \lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4} = \frac{4}{5}. \][/tex]
Hence, the limit [tex]\(\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 + 3x - 4}\)[/tex] evaluates to [tex]\(\frac{4}{5}\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.